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Abstract—This paper presents a developmental analysis of 
robot controllers created using evolutionary robotics (ER) 
methods. ER uses artificial evolution to automatically design 
and synthesize intelligent robot controllers. An aggregate 
fitness function that injects relatively little a priori task 
knowledge into the evolving controllers was used. We analyze 
the course of development of robot controllers evolving to 
perform a competitive goal-locating task. To sample the course 
of evolution, controllers were taken from progressively more 
advanced generations, and were then tested in a novel 
environment. Developments and changes in the controllers’ 
abilities and competencies were identified and correlated with 
overall controller fitness. As evolution progressed, it was found 
that robots evolved more complex high-level behaviors that 
were not explicitly selected for by the fitness function.  

 
Index Terms—Evolutionary robotics, developmental robotics, 

evolutionary neural networks, swarm robotics. 

I. INTRODUCTION 

Evolutionary robotics (ER) is an area of autonomous 
robot control research. The main objective of ER is to 
develop automatic methods for synthesizing intelligent 
autonomous robot controllers. These automatic methods 
should not require extensive a priori knowledge of the 
particular control tasks for which the robot controllers are 
intended. The goal then is to achieve a form of embodied 
machine learning that can create new behaviors for robots 
that go beyond the mere optimization of a priori known 
control strategies. 

In order for the full potential of ER to be achieved, 
methods of controller fitness evaluation must be developed 
that allow for the evolution of novel solutions not 
previously envisioned by human researchers. The less 
information a fitness function contains about features of a 
given solution to a given control task, the more freedom the 
evolutionary process will have in evolving a novel solution. 
The most unbiased fitness functions use information derived 
only from high-level success or failure to complete a given 
overall task. These are known as aggregate fitness 
functions. Unfortunately, initial populations of controllers 
often have no detectable ability to complete complex tasks, 
so pure success-failure aggregate fitness functions produce 
no selection pressure and evolution cannot commence (the 
bootstrap problem).  

To address this issue we use a multimodal fitness 
function that initially uses some minimal task-related 
features  early  in  evolution   (a bootstrap  mode),  and  then  

switches to pure aggregate success-failure selection when 
any individual within the population is capable of 
completing the overall task to some degree.  

In this paper we present a case study of how evolving 
controllers acquire specific abilities and behaviors during 
evolution.   

Robot controllers were evolved to perform a competitive 
searching task. During the course of evolution, individuals 
were selected and saved from the population for later 
developmental analysis. Controllers were selected from the 
1st generation, the 50th, and then every 100 generations 
thereafter up to 650 generations. This provided us with a set 
of individual controllers that represents the gradual 
development of abilities over the course of evolution in the 
population as a whole. 

The set of robot controllers spanning the course of 
evolution were tested in a novel environment that had not 
been used during evolution with constant initial conditions. 
The behaviors of the robots from each test generation were 
observed, analyzed and correlated with fitness function 
modes. 

 The majority of the testing was done in simulated 
environments. However, the research platform used here has 
been extensively validated in real robots. Further, the 
resulting robot controllers from the final generation of the 
evolved population investigated in this work were tested in 
real robots operating autonomously and asynchronously in a 
real environment. 

The paper is organized as follows: the remainder of the 
Introduction Section presents a review of related research. 
Section II presents an overview of the methodology used 
here, the robot systems, and the evolutionary neural network 
controller. Section III presents results analyzing the 
development of behaviors in the controller population over 
the course of evolution. Section IV offers closing remarks.  

A. Related Work 
The field of ER has been reviewed in several 

publications [1][2][3]. Much of the previous research 
focused on evolving controllers for simple tasks such as 
phototaxis [4][5], or object avoidance [6][7]. The most 
complex robot controllers evolved using ER might include 
three or four coordinated fundamental sub-behaviors 
[8][9][10][11]. The fitness functions used to evolve these 
more complex controllers were fairly intricate, and 
relatively selective for an a priori known or pre-defined 
solution. 
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Locomotion in combination with obstacle avoidance in 
legged robots has been reported in several ER studies 
[12][13][6][14]. Filliat et al. [12] evolved locomotion and 
object avoidance controllers for a hexapod robot using 
networks of threshold neurons. Controllers were evolved in 
simulation and transferred to real robots for testing. Jakobi 
et al. [13] described the use of minimal simulation to evolve 
controllers for an eight-legged robot with sixteen leg 
actuators. 

Kodjabachian et al. [6] described incremental evolution 
of walking, object avoidance and chemotaxis in a simulated 
six-legged insectoid robot. Hornby et al. [14] described the 
evolution of ball chasing using an 18-DOF quadruped robot. 

Object pushing behaviors were evolved in [15][16]. This 
task required that differential drive robots push small 
cylinders toward a light source. In [17], Lee et al. 
investigated a similar box-pushing behavior using Genetic 
Programming (GP).  

Several examples of competition in the form of co- 
evolution of competing species have been reported in the 
literature. Cliff and Miller investigated the co-evolution of 
competing populations of predator and prey robots [18][19]. 
Similar works have been reported in [2][20][21][22].  

Evolution of controllers using competition within a 
single population (intra-population competition) is 
investigated in [23] and further analyzed in the current 
work. 

The most complex tasks addressed in the literature 
involve some form of sequential action. Nolfi [8] reported 
on the evolution of a garbage collection behavior in which a 
robot must pick up pegs in an arena and deposit them 
outside the arena. Ziemke [24] studied the evolution of 
robot controllers for a task in which a robot must collide 
with objects (“collect” them) in one zone and avoid them in 
another. In [9] Floreano et al. reported on the evolution of a 
behavior in which robots move to a light and then back to a 
home zone. Another example of evolving controllers for a 
relatively complex task is reported in Tuci et al. [10]. Robot 
controllers evolved to produce lifetime learning in order to 
predict the location of a goal object based on the position of 
a light source. 

Flocking behaviors have also been investigated. Ashiru 
described the evolution of a simple robot flocking behavior 
in [11]. A robot coordination task in which two robots 
evolve to move while maintaining mutual proximity is 
reported by Quinn in [25]. Baldassarre et al. [26] evolved 
homogeneous controllers for a task in which four robots 
must move together in a small group toward a light or sound 
source. In [27] aggregation of small robots into a larger 
structure is investigated and makes use of a relatively 
complex hand-formulated fitness function.

The development of methods for general fitness 
selection during evolution of controllers is crucial to the 
future of ER. This view is reflected to a degree in the 
literature [28][7] and as early as the mid 1960’s it was 
pointed   out  that   creating  a  method  of   fitness  selection  

 
                                                        

Fig. 1. The robot maze environment containing several robots. 
 
capable of selecting for complex novel behavior was likely 
to be difficult [29].  

II. METHODOLOGY  

ER applies population-based artificial evolution to 
evolve autonomous robot controllers. The process of 
controller evolution consists of repeating cycles of 
controller fitness evaluation and selection that are roughly 
analogous to a generation in natural evolution. During each 
cycle, or generation, individual controllers taken from a 
population of controllers perform a task or engage in an 
evaluation period. This involves transferring each controller 
into a robot (either real or simulated) and allowing the robot 
to interact with its environment (which may include other 
robots) for a period of time. Following this, each 
controller’s performance is evaluated based on a fitness 
function (objective function). The fitness function is at the 
heart of any evolutionary computing application. It is 
responsible for determining which solutions (controllers in 
the case of ER) within a population are better at solving the 
particular problem at hand. In the final step of every cycle, a 
genetic algorithm (GA) is applied. The GA uses information 
generated by the fitness selection function to select and 
propagate the fittest individuals in the current population to 
the next generation. During propagation, controllers are 
altered slightly using stochastic genetic operators such as 
mutation and crossover to produce offspring that make up 
the next generation of controllers. This process is repeated 
for many generations to train populations of robot 
controllers to perform a given task. 

A. The Task 
Neural network-based robot controllers were evolved to 

play a robot version of the competitive team game Capture 
the Flag. In this game, there are two teams of mobile robots 
and two stationary goal objects. Robots on the first team and 
one of the goals are of one color (red). The other team 
members and their goal are another color (green). In the 
game, robots of each team must try to approach the other 
team’s goal object while protecting their own goal. The 
robot which first comes in contact with its opponent’s goal 
wins the game for its team. The game is played in maze 
worlds of varying configurations. 
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B. The Robots 
A multirobot system composed of two teams of robots 

was used for this research [30] (Fig. 1). Each robot is 
approximately 6 in. in diameter, and uses skid steering 
differential drive systems. The robots use x86 class 
processors running the Linux operating system and 
MATLAB. Robots support video data acquisition and rely 
solely on video for all sensing of their environment [31]. 
Each robot is fully autonomous and capable of performing 
all computing, control and data management on board.  

C. The Evolutionary Neural Networks  
The evolvable controller structures used in this research 

belong to a class of generalized network architectures. 
These networks contain feed forward and feedback 
connections, mixed types of neurons, and variable time-
delayed internal connections. Neuron activation function 
types include sigmoid, linear, step-threshold, and Gaussian 
radial basis functions. Other research involving complex 
networks can be found in  [2][13]. 

The connectivity and weighting relationships are 
contained in a variable-size two-dimensional matrix W. 
Information specifying neuron types are stored in a vector 
structure N, with one formatted field per neuron. Current 
and past network inputs and neuron functional levels 
(outputs) are stored in an ordered matrix, I. The network 
input-output relationship is given by: 

 

))(()1( WN,,II tNetworkt =+                 (1) 
and 

)1( +⊂ tio                                 (2) 
 

where o is a vector of values from specified output neurons 
and is a subset of i(t+1), the first row of the new I(t+1). 
During each sensor-motor update cycle of the robot 
controller the functional Network in (1) calculates the 
activations of each of the neurons specified in N (in order), 
and places the resulting values in successive elements of I 
until the output neurons are updated.  

An example of a controller network is shown in Fig. 2. 
The network uses 150 inputs to accommodate range sensor 
information and produces two drive-wheel commands that 
control the robot’s differential-steering wheel motors.  

D. Fitness Function (Objective Function) 
Often, ER experiments use complicated task-specific 

fitness functions to determine controller fitness and 
selection during evolution. Unfortunately, the use of such 
fitness functions can restrict the evolutionary search space 
and drive the evolving populations of robot controllers 
toward a priori known solutions. To avoid this we apply a 
form of aggregate fitness evaluation that injects as little a 
priori knowledge into the evolving controllers as possible. 

In this work, robot controller fitness was based on robot 
performance in tournaments of games. Each tournament 
involved  all  of  the  controllers  in  the  current  population. 
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Fig. 2. An evolved controller network shown in several magnifications. 
This particular network is one of the best performing networks evolved 

using this evolutionary robotics system. 
 
Robots on a given team used homogeneous (but separate) 
controllers, so each game represented a competition 
between two individuals from the evolving population. 
Controllers in the population competed directly against one 
another, hence the performance of one controller could have 
a direct effect on the performance of another.  

A fitness function with two mutually exclusive modes 
was used. The function has an initial mode that 
accommodates sub-minimally competent nascent 
populations and a second mode that selects for aggregate 
fitness based only on overall success or failure to complete 
the task (winning or losing games).  

Fitness F(p) of an individual p in population P ( P∈p ) 
is given by: 

 

)()()( 2mode_1mode_ pFpFpF ⊕=                  (3) 
 

where Fmode_1 is the initial minimal-competence mode and 
Fmode_2 is the purely success/failure based mode. In (3) ⊕  
indicates dependent exclusive-or: if Fmode_2 is non-zero for 
any member of the current population, it is used exclusively 
to evaluate all controllers in the current population. 
Otherwise fitness is calculated using Fmode_1. 

The first mode of the fitness function selects for the 
ability to travel a given distance D through an environment: 

 

sFF dist −=mode_1                             (4) 
 

where Fdist calculates a penalty proportional to the 
difference between distance d traveled by the best robot on a 
team, and the maximum required distance D, and s is a 
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penalty constant applied in the case that all the robots on a 
team stop moving.  Fdist is given by 

Table I. Parameter settings used during evolution. 
Parameter Setting 
Population size 40 
Sensor inputs 150 
Initial network size  60 neurons 
Chance of adding or removing a  
neuron (during mutation) 

70% 

Weight initialization range [-1 1], uniform dist. 
Weight mutation magnitude  [-1 1], uniform dist. 
Weight mutation rate 25%  
Initial feed forward connectivity  60% 
Initial feedback connectivity  20% 
Chance of adding or removing a  
connection (during mutation) 

70% 

Elitism level (per generation) Single best from 
previous generation 

Population replacement rate 50% 
Generations (per evolution) 650 

 

⎭
⎬
⎫

⎩
⎨
⎧ <−−

=
otherwise                   

 if      
0

)(* DddD
Fdist

α                  (5) 

 

where D is defined as half the length of the training 
environment’s greatest dimension and α is a constant of 
proportionality.   

The minimal competence mode selects for the minimal 
condition that at least one member of a team of robots 
should be able to travel halfway through its environment 
without getting stuck. There is no information encoded into 
this mode for how this might be accomplished, and once the 
initial (minimal-competence) mode is satisfied, it provides 
no further selective pressure. 

 The second fitness function mode Fmode_2 calculates 
fitness based only on success or failure of the controllers to 
complete the overall task, i.e. winning games. Each 
controller in the current population plays two games per 
tournament (or generation). Fitness scores are based on the 
number of wins achieved. The possible win/lose outcomes 
of these games incur different levels of fitness. If both 
games are won, the controller receives a score of 3. If one 
game is won and one is played to a draw, a score of 1 is 
given, and if one game is won and the other is lost a score of 
0.5 is given.  Recall that if no controller in the population 
manages to win a game in a given tournament, the initial 
minimal competence mode Fmode_1 dominates and all robots 
receive fitness ratings according to (4). 

generations progressively separated the “ages” of the 
populations. The same initial positions for robots and goals 
were used in each game. 

Robots show increasing levels of performance over the 
course of evolution. The un-evolved controllers in panel (a) 
collide with walls almost immediately. At the 50th 
generation, one of the robots is able to make progress 
through the environment before running into a wall. 
Generations 150, 250, and 350 show increasing levels of 
wall avoidance and navigation but robots are unable to 
locate the goals and cannot win games. At the 250th and 
350th generations (panels (d) and (e)), robots are able to 
travel indefinitely without getting stuck but none of them 
are able find their opponent’s goal. It is during the 450th, 
550th, and 650th generations that controllers have evolved to 
be able to win games. The final three games of Fig. 3 all 
terminate with wins. In the last three panels, robots 
appeared to be executing a “left-hand mouse rule” search 
strategy in conjunction with object avoidance.  

E. Evolutionary Conditions 
During each generation, the individuals from the fittest 

50% of the population were selected and retained, and their 
offspring replaced the least fit 50% of the population.  

Populations were kept at a constant size of 40 networks. 
Network weight mutation rates were set at 25%, and weight 
mutation magnitudes were selected from a uniform 
distribution on the interval [-1, 1]. These and other 
algorithm  

Table II summarizes the discussion of acquisition or 
development of behaviors over the course of evolution. The  
 
Table II. Qualitative acquisition of behaviors over the course of evolution. 

Solid dots indicate that a behavior is observed in that generation. Open dots 
indicate that the behavior has been superseded by another. III. RESULTS 
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0      
50 ●     
150 ● ●    
250 ○ ● ●   
350 ○ ○ ● ●  
450 ○ ○ ● ● ● 
550 ○ ○ ● ● ● 
650 ○ ○ ● ● ● 

A. Developmental Analysis of Evolving Controllers 
A set of experiments was performed to investigate the 

development of controller abilities during evolution. 
Controllers taken from different generations spanning the 
course of evolution were tested and compared. Fig. 3 shows 
a series of eight games, each involving controllers taken 
from advancing generations of the population. 

In each game, the best controller from the generation 
being tested was used to control the competing robots. The 
first game (Fig. 3 panel (a)) used an original progenitor 
controller from the initial un-evolved population. In the 
second game (panel (b)), the best controller from generation 
50  was  used.    In  the  subsequent  panels  (c)  to  (h),  100   
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Fig. 3. Sequence of games played with controllers from sequential generations of the evolving population. 
 

identification of a particular behavior represents a qualitative 
human assessment based on observation of robots during 
game sequences. In the later generations, exact behavior is 
very difficult to predict, and behaviors observed from the 
distal (exterior to the robot-controller system) are not 
necessarily reducible to discrete behaviors at the proximal 
level (from the point of view of the robot controller). 
Fundamental behaviors or skills at the proximal level are 
likely to be inextricably coupled with one another, and with 
sensor inputs [32]. 

 

B. Generalization of Evolved Controllers 
Fig. 4 shows an example game played between controllers 

taken from the 450th generation of the population. The game 
was conducted in a simulated maze environment that was 
novel to the evolved controllers (i.e. not seen during 
evolutionary training). In Fig. 4, the smaller dots with the fan-
like graphics are the robots. The fan-like graphics represent 
sensor data and are not physical objects. The paths taken by 
the robots during the games are indicated by the irregular 
curves. There are two robots on each team to make a total of 
four robots in each game. The larger dots represent the 
stationary goal objects. The heavy black line segments 
represent walls. The figure demonstrates that evolved 
controllers generalize to novel environments. This maze world 
is many times larger than any world seen by the controllers 
during evolution and includes novel structures, such as cross-
shaped cul-de-sacs, long corridors, and large open spaces.   

Robots being controlled by the best neural networks from 
the 450th generation very rarely collide with objects. A 
collision can result in the immobilization of the robot. Two of 
the robots (one from each team) did eventually become stuck 
during the game shown in Fig. 4. One robot on the green team 
collided with an object and became permanently immobilized 
near the 400th time step. Similarly, one robot from the red 

team became permanently immobilized after the 700th time 
step. The other two robots continued to travel about the 
environment for the duration of the game (about 1300 time 
steps).  
As a final note, robots using controllers from the population 
have evolved limited abilities to extricate themselves from 
collisions (being stuck). These evolved controllers are not 
purely reactive. Controllers were observed to remain immobile 
for many time steps (30 or more) and then to back up and spin 
around. Even so, most of the observed evolved behaviors were 
reactive. A close examination of controller outputs revealed 
that actuator commands stabilize relatively quickly, but do not 
reach a constant steady state. In a simple experiment, a 
controller from the population was repeatedly fed identical 
sensor inputs. Outputs did not reach exact steady states even 
after 30 time steps (data not shown).  

 

 

evbot1.crim
nnn 1 

evbot3.crim
nnn 1

evbot2.crim nnn 1 

evbot4.crim nnn 1 

Winning Robot (Green)

Red Goal 

Green Goal

 
 

Fig. 4. Evolved controllers operating in a complex world. Small circles with 
indicate are the robots (fan-like graphics represent sensor data), and larger 
circles are the goals. The paths taken by the robots during the simulation are 
indicated by dotted and solid lines. 
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IV. CONCLUSION 

In this paper the course of behavior acquisition in robots 
using neural network-based controllers was investigated.  

Further work will include investigations into a broader 
range of environmental and algorithmic conditions and for 
robots using a greater range of actuators and sensors.  In 
addition, it would be desirable to investigate alternatives to 
using a bootstrap mode to evolve controllers for complex 
tasks. 
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