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a b s t r a c t

This paper surveys fitness functions used in the field of evolutionary robotics (ER). Evolutionary robotics
is a field of research that applies artificial evolution to generate control systems for autonomous robots.
During evolution, robots attempt to perform a given task in a given environment. The controllers in the
better performing robots are selected, altered and propagated to perform the task again in an iterative
process that mimics some aspects of natural evolution. A key component of this process – one might
argue, the key component – is the measurement of fitness in the evolving controllers. ER is one of a
host of machine learning methods that rely on interaction with, and feedback from, a complex dynamic
environment to drive synthesis of controllers for autonomous agents. These methods have the potential
to lead to the development of robots that can adapt to uncharacterized environments and which may be
able to perform tasks that human designers do not completely understand. In order to achieve this, issues
regarding fitness evaluation must be addressed. In this paper we survey current ER research and focus
on work that involved real robots. The surveyed research is organized according to the degree of a priori
knowledge used to formulate the various fitness functions employed during evolution. The underlying
motivation for this is to identify methods that allow the development of the greatest degree of novel
control, while requiring the minimum amount of a priori task knowledge from the designer.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The primary goal of evolutionary robotics (ER) is to develop
methods for automatically synthesizing intelligent autonomous
robot systems. Although the greater part of current research is
applied to control systems alone, ER also applies this ideal of
automatic design to the creation of robot bodies (morphology)
and also to the simultaneous evolution of robot control and
morphology. This is often stated in terms of co-evolution of body
and mind.
Automatic robot controller development methods that do not

require hand coding or in-depth human knowledge are potentially
of great value because it may be possible to apply them to domains
inwhich humans have insufficient knowledge to develop adequate
controllers directly. Advanced autonomous robots may someday
be required to negotiate environments and situations that their
designers had not anticipated. The future designers of these robots
may not have adequate expertise to provide appropriate control
algorithms in the case that an unforeseen situation is encountered
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in a remote environment in which a robot cannot be accessed.
It is not always practical or even possible to define every aspect
of an autonomous robot’s environment, or to give a tractable
dynamical systems-level description of the task the robot is to
perform. The robot must have the ability to learn control without
human supervision.
In contrast to intelligent autonomous mobile robots, most

industrial robots perform precisely defined tasks, using methods
that are well defined at a low level. For example, an industrial
robot (even a very complex one) is usually described by a
dynamical model, and the task it is intended to perform can be
achieved by a well-defined method or procedure. Often, the task
itself can also be described by a dynamical model. Arriving at a
mathematical description of an optimal or near-optimal control
strategy to perform the task becomes amatter ofmathematical and
sometimes heuristic optimization ofwell-defined procedures [91].
The situation is quite different for autonomous robots that

must interact dynamically with complex environments. While
the overall task may remain well defined at a high level, an
effective solution algorithm is usually not well defined. Most
non-trivial tasks for intelligent autonomous robots cannot be
described adequately by tractable dynamical models. Essentially,
autonomous robot control designers know what task they want a
given robot to perform, but they do not know how the robot will
perform the task.
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Control systems for autonomous robots are often programmed
directly by researchers or designers. Such control programs can be
very complex. Researchers must anticipate which abilities a given
robot will need, and then formulate these into a control program
or control hierarchy. Many researchers in the field of autonomous
robot control rely on sophisticated control architectures to
facilitate overall control design [88,89].
As the complexity of an environment and task for a given

autonomous robot increases, the difficulty of designing an
adequate control system by hand becomes a limiting factor in the
degree of functional complexity that can be achieved. A potential
solution to this problem is to develop methods that allow robots
to learn how to perform complex tasks automatically. Developing
machine learning methods for use in robotic systems has in
fact become a major focus of contemporary autonomous robotics
research. Some of these methods, including evolutionary robotics,
focus on the ground-up learning of complete control systems.
The goal of these methods is to learn the entirety of the control
structure, rather than simply learning particular components, such
as object classification or instances of path planning.
Learning intelligent control for autonomous agents is in some

ways very different from other forms of machine learning or
optimization (see [90] for an introduction to machine learning).
In particular, it is often not possible to generate a succinct
training data set that might be used to train controllers using
batch methods or error back propagation. Defining discrete states
for complex autonomous robot-environment systems is also
problematic and traditional temporal difference (TD) methods
such as Q-learning are not easily applied to intelligent autonomous
control learning problems in dynamic continuous environments.
Evolutionary robotics approaches the problem of intelligent
control learning by applying population-based artificial evolution
to evolve robot control systems directly. This evolutionary process
represents a form of machine learning that does not necessarily
require complete knowledge of environment, robot morphology,
or task dynamics.
The field of evolutionary robotics is situated within a broader

area of research focused on automatic methods of environment-
based learning and autonomous systems development. This
broader area of inquiry includes developmental robotics
[108,109], artificial life, and a variety of other non-evolutionary
computation-based machine learning specialties applied to fully
autonomous systems. Although this survey focuses specifically on
objective functions used in evolutionary robotics research, objec-
tive functions are a central component of many control learning
methods applied to intelligent autonomous agents.
The field of automatic intelligent control learning for au-

tonomous robots is in its infancy. Much of the research surveyed
in this paper focused on learning how to perform relatively sim-
ple tasks. Phototaxis, for instance, is a well-studied task in ER and
is representative of the complexity of tasks studied in much of the
current and past research. To perform this task, a robot in an envi-
ronment must identify and home in on a light source.
The current focus of ER is on developing methods for evolving

controllers capable of performingmore difficult and complex tasks,
rather than optimizing the evolution process for tasks that have
already been achieved. Hence, producing a system that could
generate efficient controllers for the task of phototaxis using 10%
or even 50% less computing time would not be considered a real
advancement in the field. On the other hand, one particular ER
effort might be considered an improvement over an earlier work if
the later work required the use of much less a priori knowledge on
the part of the researchers to evolve controllers for a similar task.
In this case, the later system would have learned a greater portion
of novel intelligent control, and would represent an improvement
in methodology [106].
In general, the research papers reviewed in this survey report
the successful evolution of controllers capable of performing the
intended tasks. Moreover, most attempted research that failed to
produce functional controllers will likely not have been published.
Hence, the success of research is measured in the difficulty of tasks
investigated, and the amount of a priori information needed to
generate successful evolution of controllers capable of performing
those tasks.

1.1. Prior work

The field of ER has been reviewed in various publications [1–8].
However, there is no current comprehensive review of the field
that investigates the central issue of fitness selection methods in
evolutionary robotics.
[1,3] both provide excellent reviews of the state of the field

of ER in the mid-1990’s. Robot controller hardware evolution is
reviewed in [7] and an extensive review of the use of multi-
objective optimization in evolutionary robotics is found in [8].
[5] explores issues related to training phase learning, lifetime

learning and embodied learning in real robots, but that work
differs considerably from our work both in focus and coverage.
We focus on the issues of fitness determination and objective
function formulation, and compare reported fitness functions
using a common function nomenclature and classification system.
An important unanswered question within the field of ER is

whether themethods used so far to obtain themoderately complex
proof-of-concept results reported over the last decade and a half
can be generalized to produce more sophisticated autonomous
robot control systems.

1.2. Overview of robot controller evolution

In this paper, the term controller is used to describe the
computational portion of an autonomous mobile robot system
that receives information from the robot’s sensors, processes this
information, and produces actuator or motor commands that
cause the robot to move or interact with its environment. The
controller in this sense might be thought of as the brain of
the robot, and some ER researchers use this terminology. In the
broader field of autonomous robotics, control learning may focus
on selected portions of a robot’s control abilities, such as object
recognition [94], path planning and localization [92,93], or error
and fault accommodation. In contrast, ER research is typically
directed toward learning (or evolving) the entire control system.
In ER, the process of controller evolution consists of repeating

cycles of controller fitness evaluation and selection that are
roughly analogous to generations in natural evolution. During
each cycle, or generation, individual controllers taken from a large
population of controllers attempt to perform a task or engage
in some form of an evaluation period. This involves instantiating
each controller into a robot (either real or simulated) and allowing
the robot to interact with its environment (which may include
other robots) for a period of time. In later discussions we will
refer to this as an evaluation, trial or test period. Following this
period, each robot controller’s performance is evaluated based on
a fitness function (also called an objective function). In the final
step of every cycle, a genetic algorithm (GA) is applied [95]. The
GA uses information generated by the fitness function to select
and propagate the fittest individuals in the current population of
controllers to the next generation population. During propagation,
controllers are altered using stochastic genetic operators such as
mutation and crossover to produce offspring thatmake up the next
generation of controllers. Cycles are repeated formany generations
to train populations of robot controllers to perform a given task,
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and evolution is terminated when suitably functional controllers
arise in the population.
The success of the entire process depends on how effective

the fitness function is at selecting the best controllers, and it
is this feature of evolutionary robotics on which we focus our
attention. In this paper we survey the current ER literature with
an eye towards fitness functions and the relationship between
fitness evaluation methods and complexity of behavior evolved.
We present a taxonomic classification of fitness functions used in
evolutionary robotics research (Section 2) and use this to organize
the surveyed work (Section 3).
Many variations on standard GAs are used in ER, but the

majority of the research uses the traditional set of process steps
consisting of test, evaluate fitness, select, mutate/recombine and
propagate during each generation. Other related population-based
algorithms include particle swarms, ant optimization [101] and
artificial immune optimization methods [102]. Such methods
incorporate dynamics observed in nature into search algorithms
based on the assumption that search-algorithm-like processes
observed in nature represent efficientmethods honed by evolution
during the course of evolution of life on Earth. These methods, as
well as single agent learning methods, are also fitness function
driven.
The case can be made that most forms of learning of in-

telligent behavior based on interaction between agent and
environment share similar underlying characteristics. The main
motivation for using artificial evolution and GAs in learning robots
is to accommodate the computationally intractable uncharacter-
ized high-dimension real-valued search spaces encountered in in-
telligent control learning problems.

1.3. The fitness function

Successful evolution of intelligent autonomous robot con-
trollers is ultimately dependent on the formulation of suitable fit-
ness functions that are capable of selecting for successful behaviors
without specifying the low-level implementation details of those
behaviors.
The fitness function is at the heart of an evolutionary computing

application. It is responsible for determining which solutions
(controllers in the case of ER) within a population are better
at solving the particular problem at hand. In work attempting
to evolve autonomous robot controllers capable of performing
complex tasks, the fitness function is often the limiting factor in
achievable controller quality. This limit is usually manifested by a
plateau in fitness evaluation in later generations, and indicates that
the fitness function is no longer able to detect fitness differences
between individuals in the evolving population.
Although developing an experimental research platform capa-

ble of supporting the evolutionary training of autonomous robots
remains a non-trivial task, many of the initial concerns and crit-
icisms regarding embodiment and transference from simulated
to real robots have been addressed. There are sufficient exam-
ples of evolutionary robotics research platforms that have suc-
cessfully demonstrated the production of working controllers in
real robots [9–12]. Also, there have been numerous examples of
successful evolution of controllers in simulation with transfer to
real robots [13–19]. One of the major achievements of the field
of ER as a whole is that it has demonstrated that sophisticated
evolvable robot control structures (such as neural networks) can
be trained to produce functional behaviors in real (embodied) au-
tonomous robots.What has not been shown is that ERmethods can
be extended to generate robot controllers capable of complex au-
tonomous behaviors. In particular, no ER work has yet shown that
it is possible to evolve complex controllers in the general case or
for generalized tasks.
Concerns related to fitness evaluation remain largely unre-
solved. Much of the ER research presented in the literature
employs some form of hand-formulated, task-specific fitness func-
tion that more or less defines how to achieve the intended task or
behavior. The most complex evolved behaviors to date consist of
three or four coordinated fundamental sub-behaviors [14,20–22].
In [14], the fitness evaluationmethod used was relatively selective
for an a priori, known or predefined solution. In [20–22] the fit-
ness functions used for selection contained relatively little a priori
knowledge, and allowed evolution to proceed in a relatively unbi-
ased manner. This is an interesting contrast to much of the work
aimed at evolving simple homing or object avoidance behaviors,
many of which use complex fitness functions that heavily bias the
evolved controllers toward an a priori known solution.

1.4. Robots

Awide variety of robots equippedwith different kinds of sensor
types are used in ER. Almost all of these are mobile robots of one
form or another and includewheeledmobile robots, legged robots,
and flying robots.
The most typical robots used in this field are small (between

5 and 20 cm in diameter) differential drive (skid steering) robots
equipped with several IR proximity sensors, photodetectors, and
tactical sensors. Some of these robots also use video. For most of
the work discussed in this survey, robots operate in small arenas
that contain obstacles and sometimes other robots. These arenas
might be small enough to be placed on a desktop, or they might be
constructed on a portion of floor space in a research lab or office.
There are several robot platforms that are commercially

available. The Khepera robot platform is one of the most
commonly used small differential drive robot systems in ER [97].
It is of modular design and can be equipped with IR, tactile
and photosensors. A CCD camera unit and gripper unit are
also available. The Khepera is 5 cm in diameter, has limited
computational power and is often operated via an umbilical by
a remote computer. The Koala is a larger differential drive robot
(30 cm in length) alsomanufactured by themakers of the Khepera,
andhas beenused in a fewER experiments. Commercially available
LEGO Mindstorm-based robots have also been used for several ER
experiments.
Many researchers use small custom robots of their own

construction for ER work. For example, the EvBot [96] is a small
differential drive robot that has been used by several research
groups for a variety of ER experiments.
Larger lab robots such as the RWI B21 [50] and the Nomad [28]

have been used in a few ER research efforts. Unlike the smaller
robots, these robots are heavy, more powerful, and capable of
damagingwalls and other laboratory equipment. In addition, these
robots can be quite expensive and difficult to maintain.
A smaller but considerable amount ofwork has been done using

legged robots frombipeds to octopods. Themajority of these robots
are custom-built by the various researchers and labs using hobby
servos. In addition to these, the commercially available Sony AIBO
quadruped robot has been used in a number of gait learning and
locomotion learning ER experiments. This is a small 18 degree-of-
freedom (DOF) robot that uses video and IR sensors.
When discussing particular research examples in the survey

portion of this paper wemention briefly the type of robot used and
the sensor configuration, but do not go into detail unless the robot
platform is significantly different from the common differential
drive systems used by the majority of the researchers.



348 A.L. Nelson et al. / Robotics and Autonomous Systems 57 (2009) 345–370
1.5. Controller architectures

Learning control is common to all ER work. A variety of
controller architectures are used in ER. These include neural
networks, evolvable programs, various parameterized control
structures, and evolvable hardware devices.
Neural networks are well suited for training with evolutionary

computing-based methods because they can be represented by
a concise set of tunable parameters. A wide variety of neural
network structures have been used. Themost common of these are
layered feedforward or recurrent network architectures. A few of
the papers cited here use Hebbian networks or other self-training
networks, and these are pointed out. Neural networks are used in
approximately 40% of ER work.
Evolvable programming structures are used in about 30% of the

ER research. The process is referred to as genetic programming
(GP). The work using evolvable hardware generally implemented
some form of genetic programming or evolvable logic structure in
hardware.
Much of the ER work that focused on evolution of gaits for

legged robots simply evolved sets of gait control parameters. For
instance, the Sony AIBO robot’s gait is controlled by a set of
timing and joint-position parameters, and in several of the works
surveyed here, a subset of these were evolved directly. Evolving
parameters of an otherwise specified gait control program differs
from the majority of other ER work in that the full control system
was not evolved. Most other ER work focuses on learning of
monolithic control systems that act directly on sensor inputs and
produce actuator commands.

1.6. Tasks and behaviors

In this subsection we will briefly discuss some of the most
common tasks that robots have been evolved to perform in ER
research. Some of these tasks have been studied by many different
researchers over the last two decades.
Locomotion and object avoidance is one of the most frequently

investigated robot tasks studied in ER. In this task robots must
evolve to travel about an environment while avoiding stationary
and sometimesmobile obstacles. This taskmight also be referred to
as navigation, although technically, the term navigation generally
involves traveling to and from specified locations, not just moving
about without hitting anything.
Gait learning in legged robots is another commonly studied

task. In the simplest form of gait evolution, functional forward
locomotion is the only goal and no sensor inputs are used.
Gait learning is a form of locomotion learning, but it might be
considered a somewhat more difficult problem in legged robots
than inwheeled robots. For locomotion to occur inwheeled robots,
the wheel actuators must simply be turned on. For differential
drive robots, this essentially consists of a 2-DOF system and
evolving a controller to produce straight motion in an open
environment would be considered trivial by modern standards.
Locomotion in legged robots, on the other hand, is much less
trivial. Most legged robots have between 12 and 20 DOF. Simply
energizing the actuators is very unlikely to produce efficient
locomotion. The leg actuators must be cycled on and off in a
coordinated and controlled fashion.
Phototaxis is another frequently studied task. As mentioned

earlier in the paper, robots must detect and home in on a light
source in this task. Goal homing is a related task, but here, the goal
location is not marked by a light source, and might not be marked
at all. Environment complexity can play a significant role in the
difficulty of the behavior to be learned in both goal homing and
phototaxis tasks. Environments that contain objects that occlude
the goal or light location from the sensors of the robots will require
a more sophisticated strategy to negotiate than would be required
in a simple environment.
Searching tasks are also commonly studied in ER. In searching

tasks, robots travel about an environment searching for various
objects. This might be considered a variation on goal homing, but
the environment could contain many search objects.
Foraging is similar to searching, but the robots are also required

to pick up or acquire the objects, and in some cases to then deposit
the objects at a goal location. Foraging with object deposition
(or object carrying) is on the complex end of the scale for tasks
and behaviors studied in ER. Robots must find objects in an
environment, then pick them up and carry them to another
location and deposit them. These steps taken together contain an
element of sequencing and cannot easily be performed by a purely
reflexive system.
Predator and prey tasks involve one robot learning (or evolving)

to capture another robot while the other learns to evade the first.
There are several variations on this theme.Most common is a setup
in which only one of the robots uses evolving controllers while the
other uses a fixed hand-designed controller.
There are a few examples of other complicated tasks found in

the literature. These includemultiple goal homing, inwhich a robot
must travel to two or more goal locations in a specified sequence.
Another more complex task is represented by groups of robots
competing against one another to find hidden objects.

1.7. Fitness landscapes

The analysis of fitness landscapes is usually considered to be
an important issue in evolutionary computing applications. For a
given search space, a given fitness function will define a fitness
landscape or manifold. In evolutionary robotics, the search space
is defined by the genome defining the controller representation
(or controller and morphology representation, if body and mind
are being co-evolved). Each evolvable parameter of the genome
defines a dimension of the search space, and the fitness landscape
is then given by the manifold defined by the fitness of each point
in the search space.
In many areas of evolution computing, great effort is made to

elucidate the properties of the search space and the topology of a
given fitness landscape generated by application of a given fitness
function. Certain more tractable fitness landscapes are amenable
to specialized algorithms that may reduce computation effort,
guarantee convergence or otherwise produce desirable features.
However, in ER, genome search spaces and fitness landscapes

are often very difficult to characterize to the degree that significant
benefit can be gained. The topologies of search spaces traversed by
the evolving dynamic controller populations are generally rugged
in the extreme, may have varying numbers of dimensions, and
may potentially be non-static [98]. Because of these factors, search
spaces and associated fitness landscapes in ER are often intractable
in terms of full characterization. This state reflects the fact that
the genomes are designed to be able to represent autonomous
dynamic agents, at least in terms of control.
Currently, there is no adequate theory that can relate salient

features of intelligent systems to representations. For example,
it is difficult or impossible to distinguish between a well trained
and a poorly trained neural network by any means other than
direct testing. The intractable nature of fitness landscapes is one
of the defining features of ER and any form of autonomous control
learning based on interaction between agent and environment.
Because of this underlying intractability, there is no great emphasis
on fitness landscape analysis in ER. Further, and perhaps more
importantly, attempts to make search spaces more tractable often
impose biases into the evolving systems that reflect the designer’s
intuitive a priori knowledge of known solutions, thus reducing the
system’s ability to discover novel solutions.
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Table 1
Fitness function classes.

Fitness function class A Priori knowledge incorporated

Training data fitness functions (for use with
training data sets)

Very high

Behavioral fitness functions High

Functional incremental fitness functions Moderate-high

Tailored fitness functions Moderate

Environmental incremental fitness
functions

Moderate

Competitive and co-competitive selection Very low-moderate

Aggregate fitness functions Very low

2. Classification of fitness functions in evolutionary robotics

In this section, we present a classification system for fitness
functions and review current methods used for controller fitness
evaluation in evolutionary robotics. The classification hierarchy is
based on the degree of a priori knowledge that is reflected in the
fitness functions used to evolve behaviors or task performance
abilities. The justification for using a priori knowledge as a basis
for classification and organization of the research is that it reflects
the level of truly novel learning that has been accomplished [106].
There are of course other means by which designers introduce
their own a priori knowledge of task solutions into the design of
experimental systems intended to study evolution (or learning)
in autonomous robots. These include selection of appropriate
sensors and actuators, design of training environments, and choice
of initial conditions. Although these other forms of introduced
a prior knowledge are also important (and perhaps worthy of
a meta-study), it is the fitness function that contains the most
explicit and varied forms of task solutions knowledge. Many of
the research platforms have at least qualitative commonalities
of sensor capabilities and actuator arrangements. For example in
more than half of the literature survived in this review, wheeled
robots that employed differential drive for steering were used.
We define seven broad classes of fitness functions. These are

listed in Table 1. The characteristics of each class will be discussed
in this section and a full survey of ER research in terms of particular
fitness functions will follow in Section 3.

2.1. Training data fitness functions

The first class of fitness functions, those used with data sets, is
not exclusive to evolutionary computing methods. Training data
fitness functions are used in gradient descent training methods
such as error back propagation for training neural networks,
and various curve-fitting and numerical methods. Here, fitness is
maximized when the system in question produces a minimum
output error when presented with a given set of inputs with a
known set of optimal associated outputs.
For a given problem, a training data set must include sufficient

examples such that the learning system can extrapolate a valid
generalizable control law. Thus, at least implicitly, an ideal training
data set contains knowledge of all salient features of the control
problem in question. For controllers that are intended to perform
a complex behavior or task, sufficient training data sets are usually
unavailable, and the knowledge needed to create such a data
set could be used to formulate a more traditional controller. The
main use of training data fitness functions in autonomous control
learning is in the area of mimetic learning, where a robotic system
learns to mimic behavior generated by a human or other trainer.
In some sense, training data fitness functions require complete
a priori knowledge of the task to be performed, at least insofar
as it is possible to generate a suitable training data set. Robots
trained with such data sets learn to duplicate an a priori known
set of system inputs and outputs. Knowledge-based training and
examples of the use of training data fitness functions in ER can be
found in [23–25].

2.2. Behavioral fitness functions

Behavioral fitness functions are task-specific hand-formulated
functions that measure various aspects of what a robot is doing
and how it is doing it. These types of functions generally include
several sub-functions or terms that are combined into a weighted
sum or product. These sub-functions or terms are intended
to measure simple action-response behaviors, low-level sensor-
actuator mappings, or other events/features local to the robot.
These will be referred to as behavioral terms, and measure some
aspect of how a robot is acting (behaving), not what it has
accomplished. In contrast, aggregate terms measure some aspect
of what the robot has accomplished, without regard to how it was
accomplished.
The quality that unifies functions in the class of behavioral

fitness functions is that they are made up only of terms or
components that select for behavioral features of a presupposed
solution to a given task. For example, if onewished to evolve robots
to move about an environment and avoid obstacles, one might
include a term in the fitness selection function that is maximized
if a robot turns when its forward sensors are stimulated at close
range. In this case the system is set up such that robots will
evolve to produce a certain actuator output in response to a given
sensor input. Now, selection occurs for a behavior that the designer
believes will produce the effect of obstacle avoidance, but the
robots are not evolving to avoid objects per se, they are learning
to turn when their forward sensors are stimulated. This is more
specific than just selecting for robots that do not collide with
objects.
Some terms in a behavioral fitness function are not selective

for a precise sensor-to-actuator mapping, but rather for a desired
control feature. For example, if one wished to evolve a robot
controller that spent most of its time moving, one might include
a term in the fitness function that is maximized when forward
motion commands result in continued forwardmotion of the robot
over time (if the front of a robot were in contact with an immobile
object, it would notmove forward regardless of its current actuator
commands). This example term is not selective for an exact sensor-
to-actuator mapping. There are other possible formulations that
could also produce the desired control feature, such as a term that
maximized the ratio of forward motion to forward sensor activity.
Hence, this type of term does not require quite as much a priori
knowledge of the exact details of the control law to be learned.
Examples of the use of behavioral fitness functions can be found
in [13,26,27].

2.3. Functional incremental fitness functions

Functional incremental fitness functions begin the evolutionary
process by selecting for a simple ability upon which a more
complex overall behavior can be built. Once the simple ability is
evolved, the fitness function is altered or augmented to select for
a more complex behavior. This sequence of evolution followed
by fitness function augmentation continues until eventually the
desired final behavior is achieved. The overall process can be
considered one of explicit training for simple sub-behaviors
followed by training for successively more complex behaviors.
Often, an artificial evolution process that makes use of an
incremental fitness function is referred to as incremental evolution.
Functional incremental fitness functions address a major

difficulty in evolutionary robotics. For difficult tasks, it is possible
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that some or all of the controllers in a newly initialized population
will possess no detectable level of ability to complete the task.
Such a controller is referred to as being sub-minimally competent.
If all the controllers in an initial population of controllers are
sub-minimally competent for a particular fitness function, then
the fitness function can generate no selective pressure and the
population will fail to evolve. Functional incremental fitness
functions overcome the problem of sub-minimally competent
controller populations by augmenting the difficulty of the task
for which the controllers are being evolved during the course of
evolution.
One main criticism of using functional incremental fitness

functions is that they may restrict the course of evolution to the
degree that resulting controllers cannot be considered to have
evolved truly novel behaviors. The designer is not only responsible
for including features of a desired solution (as is the case for
tailored fitness functions, discussed in the next subsection), but
must also structure the search path through the controller’s
configuration space (search space). For non-trivial robot control
tasks, there is no guarantee that this design problem is tractable.
Examples of ER research making use of functional incremental
fitness functions are found in [9,33,34].

2.4. Tailored fitness functions

In addition to behavior-measuring terms, tailored fitness
functions contain aggregate terms that measure some degree or
aspect of task completion that is divorced from any particular
behavior or method. Hence, tailored fitness functions combine
elements from behavioral fitness functions and aggregate fitness
functions (discussed in Section 2.7 of this section). As an example,
suppose a phototaxis behavior is to be evolved. A possible fitness
functionmight contain a term that rewards a controller that arrives
at the light source by any means, regardless of the specific sensor-
actuator behaviors used to perform the task. This term would be
considered an aggregate term. If it were the only term in the
fitness function, then the whole function would be considered
aggregate. If the function also contained a second behavioral
term, for example, one that maximized the amount of time the
robot spent pointing toward the light source, then the two terms
togetherwould constitute an example of a tailored fitness function.
Note that this second term, selecting for pointing toward the light
source, does represent implicit assumptions about the structure of
the environment andmay not be the bestway to approach the light
source in some complex environments.
Unlike true aggregate fitness functions, aggregate terms in

tailored fitness functions may measure a degree of partial task
completion in a way that injects some level of a priori information
into the evolving controller. For example, in the phototaxis task,
a tailored fitness function might contain a term that provides
a scaled value depending on how close the robot came to the
light source. This may seem at first glance to be free of a priori
task solution knowledge, but it contains the information that
being closer to the goal is inherently better. In an environment
composed of many walls and corridors, linear distance might
not be a good measure of fitness of a given robot controller.
We use the term ‘‘tailored’’ to emphasize that these types of
fitness functions are task-specific hand-formulated functions that
contain various types of selection metrics, fitted or tailored by the
designer to accommodate the given problem, and often contain
solution information implicitly or explicitly. Examples of work
using tailored fitness functions can be found in [28–30].
Together, tailored fitness functions and behavioral fitness

functionsmake up by far the largest group of fitness functions used
in current and past evolutionary robotics research. These types of
fitness functions are formulated by trial and error based on the
human designer’s expertise.
2.5. Environmental incremental fitness functions

Rather than simply increasing the complexity of the fitness
selection function, one form of incremental evolution involves
augmenting the difficulty of the environment in which the robots
must operate. This is referred to as Environmental incremental
evolution. Environmental incremental evolutionmaynot constrain
the controller’s search space to the degree that evolution must
converge on a particular predefined solution. Relatively little
work has been done using environmental incremental evolution.
In [35] the authors used Environmental incremental selection
to evolve controllers for a fairly complex peg collection task.
That research showed that Environmental incremental evolution
can produce robot controllers capable of expressing complex
behaviors. However, it is not clear towhat degree the selection and
augmentation of training environments shaped the final evolved
controllers. Other examples include [36,37,83].

2.6. Competitive and co-competitive fitness selection

Competitive fitness selection utilizes direct competition be-
tweenmembers of an evolving population. Controllers in almost all
ER research compete in the sense that their calculated fitness levels
are compared during selection and propagation. However, in com-
petitive evolution robot controllers compete against one another
within the same environment so that the behavior of one robot di-
rectly influences the behavior, and therefore fitness evaluation, of
another. For example, in a competitive goal-seeking task, one robot
might keep another from performing its task by pushing it away
from the goal. Here, the second robot might have received a higher
fitness rating if it had not been obstructed by the first robot. Exam-
ples of the use of intra-population competition, in which the fit-
ness of individual robots were directly affected by interaction with
other robots using controllers from the same population, has been
investigated in [21].
In co-competitive evolution two separate populations (per-

forming distinct tasks) compete against each other within the
same environment. Examples of co-competitive evolution involv-
ing populations of predator and prey robots exist in the liter-
ature [10,38,39,84]. Two co-evolving populations, if initialized
simultaneously, stand a good chance of promoting the evolution
of more complex behaviors in one another. As one population
evolves greater skills, the other responds by evolving reciprocally
more competent behaviors. [84] discusses this putative explana-
tion for the selective power of competitive selection, termed the
Red Queen Effect. The changing behavior of the evolving compet-
ing agents alters the fitness landscape, essentially generating a
more and more arduous selection criterion but without changing
the fitness function explicitly. The research presented in [10,38,39]
shows this effect in evolving robot controller populations to a
degree, but results from other areas of evolutionary computing
suggest that given the correct evolutionary conditions, aggregate
selection combined with intra-population competition within a
single population performing a directly competitive task can pro-
duce very competent systems [40,41].

2.7. Aggregate fitness functions

Aggregate fitness functions select only for high-level success
or failure to complete a task without regard to how the task
was completed. This type of selection reduces injection of human
bias into the evolving system by aggregating the evaluation of
benefit (or deficit) of all of the robot’s behaviors into a single
success/failure term. This is sometimes called all-in-one evaluation.
Examples of aggregate fitness selection are found in [17,16,32].
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Consider the following foraging task: a robot is to locate and
collect objects and then deposit them at a particular location (or a
‘‘nest’’). An aggregate fitness function would contain information
only related to task completion. Suppose the task is considered to
be complete when an object is deposited at the nest. An example
of an aggregate fitness function for this task would be one that
counted the number of objects at the nest after the end of a trial
period.
Until recently, aggregate fitness selectionwas largely dismissed

by the ER community. This is because initial populations of con-
trollers generally have no detectable level of overall competence
to performnon-trivial tasks (i.e. they are sub-minimally competent).
In the example above, if the objects were sparsely distributed in a
complex environment, and the controllers in the initial un-evolved
population were truly randomly configured without any naviga-
tion, object recognition or homing abilities, the chances of one of
them completing the task by chance are diminishingly small. This
situation is often referred to as the bootstrap problem [31]. Com-
pletely aggregate selection produces no selective pressure in sub-
minimally competent populations at the beginning of evolution
and hence the process cannot get started.
Even so, aggregate fitness selection in one form or another

appears to be necessary in order to generate complex controllers
in the general case if one is to avoid injecting restrictive levels
of human or designer bias into the resulting evolved controllers.
For the evolution of truly complex behaviors, selection using
behavioral fitness functions and incremental fitness functions
results mainly in the optimization of human-designed controller
strategies, as opposed to the evolution or learning of novel
intelligent behavior.
It is possible to overcome some of the problems associated

with aggregate selection. One approach is to use a tailored fitness
function to train robots to the point at which they have at least
the possibility of achieving a given complex task at some poor
but detectable level, and then to apply aggregate success/failure
selection in conjunction with intra-population competition to
drive the evolutionary process to develop competent controllers.
Intra-population competition presents a continually increasing
task difficulty to an evolving population of controllers and may
be able to generate controllers that have not been envisioned by
human designers.
The chart in Fig. 1 relates the classes of fitness functions

to degrees of a priori knowledge incorporated into evolving
populations of robot controllers. The chart is qualitative and
reflects general associations. Some of the fitness function classes
discussed previously can be formulated to incorporate varying
degrees of a priori knowledge into evolving populations and are
depicted spanning several levels on the horizontal axis.

3. A survey of fitness evaluation functions in ER

In this section we survey current and past ER research and
organize the work using the classification system presented in
Section 2. The surveyed research is listed by fitness function class
and by date in Tables 3–8. A distinction is made between work
that involved real robots and that in which only simulated robots
were used. We have endeavored to reference most of the major
research efforts that involved real robots at some level or another.
Somework that was conducted only in simulation but never tested
on real robots is also discussed at the end of this section. Here,
though, we do not attempt a comprehensive summary of the
purely simulated work.
Before we continue into our main survey and discussion of

fitness functions used in ER, we will lay out some general bounds,
define conventions used for symbolic representation of fitness
Fig. 1. Chart relating classes of fitness functions to levels of incorporated a priori
knowledge.

functions, and define features or elements that are common to
most of the reviewed research.
Almost all of the work considered in this survey employed

some form of population-based artificial evolution in which
the candidate solutions being evolved are autonomous robot
controllers. Although the evolutionary algorithms vary to a degree
from work to work, most of them fall within a general class
of stochastic hill-climbing learning algorithms. Unless otherwise
stated, the research papers reviewed here may be assumed to
use an evolutionary method roughly equivalent to that which
was outlined in the introduction to this paper. Population sizes
vary widely. Much of the research used population sizes in
the range of 20–100. Twenty to 300 generations are generally
reported to be required to evolve suitable controllers for the
majority of tasks investigated, but generations might range into
the thousands in some cases. In a few cases the evolutionary
algorithms differ significantly from standard forms and in these
cases a short description of the artificial evolution methods used
will be included.
As noted in the introduction, efficacy ofmethods beyond that of

obtaining reasonably functional controllers is not a primary focus
of evolutionary robotics in its current state of development. The
focus, rather, is upondesigning evolutionary systems able to evolve
controllers capable of performing new tasks of greater complexity.
It is true that some methods or robot platforms may show a
2-fold (or even 10-fold) increase in training efficiency over others,
but it is the fitness function that finally determines the achievable
performance.
We have endeavored to translate the diverse formulations of

the fitness functions into a consistent summary representation.
It is important to note that in some cases details of the original
fitness functions are abstracted so that the underlying forms can
be presented and compared in a standardized way. In some cases,
fitness functions have been generated from a text description.
This is done so that the underlying natures of functions can be
compared more directly.
Where possible, f will be used to indicate instantaneous fitness.

In general, fitness is maximized during an artificial evolution
process, and unless otherwise stated, it will be assumed that a
given fitness function is optimized when it is maximized. Those
functions that are minimized are denoted with a minus sign
subscript (f(−)).
In the process of evaluating the fitness of a given robot

controller, fitness functions are commonly integrated or averaged
with respect to sensory-motor cycles or time steps over the course
of a fitness evaluation trial period. In many cases, researchers
report fitness functions that explicitly include this integration
process. To facilitate comparison, and to define a simple unified
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Table 2
List of common symbols used in fitness function representation.

Symbol Meaning

F Explicit fitness function
f Fitness function integrand or summand
ϕ Non-standard integrand or summand
f1 , f2 , f3 Incremental fitness function integrand
d Distance traveled
v Velocity (drive motor)
s Sensor activation level
B Boolean sub-function
c Constant coefficient

format as much as possible, the standardized representation
used in this survey presents fitness functions in the form of
an integrand only. Integrals or averaging summations are not
explicitly symbolized in the standardized representation of these
fitness functions. Integration or summing is assumed to be part
of the evaluation process and is common to almost all the
work surveyed. This means that for a particular fitness function
integrand reported as f (·) in this survey, the actual fitness
calculation for an evaluation period of time length N (or of N time
steps) would be calculated by

F(t) =
1
N

∫ tN

t0
f (t, q(t))dt (1)

or

F(t) =
1
N

tN∑
t0

f (t, q(t)) (2)

where t , t0, tN , and q represent time, initial time, final time and a
vector of other (possibly implicit) functions of time respectively.
Note that in many cases t does not relate directly to physical time,
but rather measures time steps in a simulation environment or
measures a quantized form of time. Among others, the symbol k
is used in some of the referenced works to indicate discrete time,
but we use the symbol t in all formulas to facilitate comparison of
general forms.
Fitness functions that cannot be reduced to an average, sum

or integral are stated explicitly. In these cases an uppercase F
is used and represents the entire cumulative fitness of a given
individual measured over a given evaluation period. Aggregate
fitness functions, for example, usually only report success or
failure after a given trial evaluation period and do not represent
a continuous integration or summing process.
Fitness functions whose values depend on specific events, or

that use secondary summations, integrals, or other terms that
are not integrated with respect to time are also reported in full
form. Occasionally researchers employ fitness metrics that update
fitness at specific trigger points during an evaluation period rather
than at each time point. These functions will be given using a
lower-case phi (ϕ).
Common terms and factors appear in many fitness functions

and where possible we will use consistent notational conventions.
These include distance traveled, speed, and sensor activation
levels, and these will be represented by d, v, and s respectively.
Boolean functions will be represented with an uppercase B.
Constant coefficients will be represented by c. In the case of
incremental fitness functions, f1, f2, f3 and so on will be used
to indicate the functions and their order of application. Table 2
provides a list of common symbols used in this paper in the
representation of fitness functions.
Tables 3–8 list the main body of work cited in this survey,

and include the fitness function class used, the author(s) and year
of publication of the citation, the task or behavior investigated,
the environment in which the evolution was performed, the
type of robot used, and the controller architecture or learning
representation used.
It is our view that evolutionary robotics work should be

verified in real robots. Physical verification in real robots forces
researchers to use simulations that are analogous to the physical
world. Some subtleties of control are contained within the
robot–world interface and are easily overlooked. In particular,
adequate simulators must maintain a suitable representation of
the sensory-motor-world feedback loop in which robots alter
their relationship to the world by moving, and thus alter their
own sensory view of the world. Robotics work involving only
simulation, without physical verification, should not be considered
fully validated. Much of the pure-simulation work falls into the
category of artificial life (AL), and many of these simulation
environments include unrealistic representation or rely on sensors
that report unobtainable data or that report conceptual data.
That said, learning in simulation with transfer to real robots has
been repeatedly demonstrated to be viable over the last decade.
Much of this work has involved new physics- and sensor-based
simulators. Introducing noise into the simulation environment has
been shown to aid in transference of evolved controllers from
simulated to real robots [27] and continues to be studied [105].
The verification of evolved controllers in real robots allows a clear
distinction to be made between the large amount of work done in
the field of artificial life, and the similar, but physically grounded
work pursued in evolutionary robotics.
We focus on providing a comprehensive survey of evolutionary

robotics in terms of fitness functions used during training of
controllers; later in this section we list these fitness functions
explicitly by class. In order to give some context, we also
include some details of the tasks learned by the robots, controller
representations and other experimental details, but the review
is not meant to comprehensively describe all aspects of the
experimental procedures used by the researchers.
If included in the individual papers surveyed, we also report the

population size and number of generations required for successful
evolution of competent controllers. The readermay note that there
is considerable variation in the number of generations required to
evolve controllers for a given task. These differences reflect various
aspects of the individual algorithms used, the evolvable controller
structures used, and the physical robots involved. Beyond the
fitness function we do not attempt to delve into the specifics of
the genetic algorithms used unless the details are salient or differ
significantly from the norm.
The relative efficiency of controllers evolved in different

research efforts is not the central focus of comparison in this
survey, or in the field of evolutionary robotics as a whole. Most of
the cited research efforts did produce functional controllers. There
are however a few works that did not produce robot controllers
capable of achieving the particular tasks intended. These are
pointed out when discussed.
The works surveyed are in some ways disparate, and an

absolute direct quantitative comparison of the various results
is not suggested. Complexity of tasks learned, as well as the
amount of a priori information needed to select for a given task
using a given robot system are central issues in ER. These two
factors, task complexity and a priori information used during
evolution, can form the basis of a qualitative comparison of various
methods use to evolve controllers. The most advanced work is
that which evolves controllers for the most complex tasks while
minimizing the amount of a priori information contained in the
fitness functions used to drive the evolutionary process. For the
complexity of the simple tasks studied in current research, and
common fitness function formulations, this is a viable general
approach. However, as the state of the art of ER becomes more
advanced, even qualitative comparison of different ER research
efforts will require a greater emphasis on formal comparison
methods based on task difficulty metrics and machine intelligence
quotient definitions.



A.L. Nelson et al. / Robotics and Autonomous Systems 57 (2009) 345–370 353
Table 3
Summary of ER research using behavioral fitness functions.

Citation Author(s), Year of
publication

Task evolved/Learned Embodied/Real/Simulated Robot platform Evolved controller
type/Algorithm

[11] Floreano and
Mondada, 1996

(1) Locomotion with object
avoidance

Embodied Khepera Neural network

(2) Locomotion with periodic goal
homing

[13] Lund and Miglino,
1996

Locomotion with object avoidance Simulated, transferred
to real

Khepera Neural network

[26] Banzhaf et al., 1997 (1) Locomotion with object
avoidance

Embodied Khepera with IR sensors Evolvable program (GP)

(2) object following
(3) wall following
(4) light avoidance

[27] Jakobi, 1998 Locomotion with object avoidance Simulated, transferred
to real

Octopod robot Neural network

[42] Gomi and Ide, 1998 Gait evolution Embodied OCT-lb, Octopod robot Set of gait control parameters

[43] Matellán et al., 1998 Locomotion with object avoidance Embodied Khepera Fuzzy logic controller

[15] Nordin et al., 1998 Locomotion with object avoidance Simulated, transferred
to real

Khepera Evolvable program (GP)

[44] Liu et al., 1999 Object pushing Embodied Custom built robot (JUNIOR) Evolvable program (GP)

[45] Seok et al., 2000 Phototaxis with obstacle avoidance Embodied Custom built robot Evolvable hardware (FPGA)

[46] Ziegler and Banzhaf,
2001

Locomotion with object avoidance Simulated, transferred
to real

Khepera Directed graph
Table 4
Summary of ER research using functional incremental fitness functions.

Citation Author(s)/Year of publication Task evolved/Learned Embodied/Real/ Simulated Robot platform Evolved controller
type/Algorithm

[9] Harvey et al., 1994 Differential goal homing Embodied Gantry robot Neural network

[33] Lee et al., 1997 Object pushing with goal
homing

Simulated, partial transfer to
real

Khepera Evolvable program (GP)

[71] Filliat et al., 1999 Locomotion with object
avoidance

Simulated, transferred to real SECT Hexapod robot Neural network

[36] Pasemann et al., 2001 Goal homing with object
avoidance

Simulated, transferred to real Khepera Neural network

[34] Barlow et al., 2005 Goal homing and circling Simulated, transferred to real EvBot Evolvable program (GP)
3.1. Training data fitness functions

Training data fitness functions such as those used in back
propagation training of neural networks require full knowledge
of the solution sought in the form of a training data set. As
such, these functions represent a form of solution optimization
and/or n-dimensional surface fitting. We mention these here for
completeness and context, but thesemethods fall outside the focus
of this review and of ER, and they cannot be used to discover
intelligent control solutions whose features are not captured in a
training data set (and therefore known a priori at some level).
In mimetic methods, a training data set is generated by

recording the sensor inputs and motor outputs of a system while
it is performing a particular task. Such data sets are often derived
from a teleoperated system controlled by a human, and the
resulting trained systems in effect learn to mimic a particular
example of a human performing the task.
Also along these lines, breeder or clicker training does not use a

specific training data set, but requires a human trainer to provide
fitness feedback during training [99,100]. In essence, a new set
of training examples is created and coded (evaluated as positive
or negative) during each training session. In breeder training, the
trainer need not be able to define an explicit fitness function, but
he or shemust still rely on his or her own a priori knowledge of how
to perform the task which the agent is being trained to perform.
3.2. Behavioral fitness functions

Behavioral fitness functions measure fitness by measuring
qualities or features of how a robot behaves while that robot is
attempting to perform a task. Behavioral fitness functions do not
directly measure how well the robot has accomplished its overall
task per se. Task completion is measured implicitly by the terms
that measure various aspects of the robot’s behavior (see Section 2
for an illustrative example). Research that employed behavioral
fitness functions is summarized in Table 3.
In [11], an experiment is discussed in which neural network-

based controllers for a Khepera robot were evolved to perform a
navigation andobstacle avoidance task. During the experiment, the
robot (or more precisely, a population of neural networks) learned
to navigate around a maze-like environment with a single closed
loop, and to avoid bumping into walls while doing so. The robot
was equipped with IR sensors for detection of its environment.
The fitness function integrand used to select the fittest controllers
during evolution was

f = mean(vl, vr)(1−
√
|vl − vr |)(1− sir) (3)

where vl and vr are left and right drive motor speeds, and sir
is the greatest current activation level of the IR sensors. This is
considered a behavioral fitness function because it bases fitness on
local motor behaviors and sensor responses and does not directly
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Table 5
Summary of ER research using tailored fitness functions.

Citation Author(s), Year of publication Task evolved/Learned Embodied/Real/
Simulated

Robot platform Evolved controller type/Algorithm

[47] Hoffmann and Pfister, 1996 Goal homing with object avoidance Simulated,
transferred to real

Custom lab robot Fuzzy logic controller

[48] Thompson, 1996 Locomotion with object avoidance Simulated,
transferred to real

Sussex Mr. Chips
robot

Evolvable hardware (FPGA)

[28] Schultz et al., 1996 Agent herding Simulated,
transferred to real

Nomad 200 Evolvable rule set

[14] Nolfi, 1997 Foraging with object deposition Simulated,
transferred to real

Khepera with gripper Neural network

[29] Keymeulen et al., 1998 Target homing with obstacle
avoidance

Simulated,
transferred to real

Custom lab robot Evolvable hardware (FPGA)

[49] Ishiguro et al., 1999 Object pushing with goal homing Simulated,
transferred to real

Khepera Neural network

[50] Ebner and Zell, 1999 Locomotion with object avoidance Simulated,
transferred to real

RWI B21 Evolvable program (GP)

[20] Floreano and Urzelai, 2000 Sequential goal homing Embodied Khepera, Koala Neural network

[52] Sprinkhuizen-Kuyper et al.,
2000

Object pushing Simulated,
transferred to real

Khepera Neural network

[53] Wolff and Nordin, 2001 Gait optimization Embodied ElVINA (biped) Gait parameter set

[54] Nehmzow, 2002 (1) photo-orientation
(2) object avoidance
(3) robot seeking

Embodied Custom LEGO robots Evolvable program (GP)

[12] Watson et al., 2002 Phototaxis Embodied Custom robot Neural network

[56] Marocco and Floreano, 2002 Locomotion with wall avoidance Embodied Koala Neural network

[57] Okura et al., 2003 Locomotion with object avoidance Embodied Khepera Evolvable hardware (FPGA)

[30] Quinn et al., 2002 Coordinated movement Simulated,
transferred to real

Custom robots Neural network

[58] Gu et al., 2003 Object (ball) homing Embodied Sony AIBO Evolvable fuzzy logic controller

[55] Simões and Barone, 2004 Locomotion with object avoidance Embodied Custom robots Neural network

[59] Nelson et al., 2004 Locomotion with object avoidance Simulated,
transferred to real

EvBot Neural network

[60] Boeing et al., 2004 Gait evolution Simulated,
transferred to real

Andy Droid robot Spline controller

[61] Hornby et al., 2005 Gait evolution Embodied Sony AIBO Gait parameter set

[62] Kamio and Iba, 2005 Object pushing with goal homing Simulated,
transferred to real

Sony AIBO, HOAP-1 Evolvable program (GP)

[22] Capi and Doya, 2005 Triple sequential goal homing Simulated,
transferred to real

Cyber Rodent Neural network

[63] Parker and Georgescu, 2005 Phototaxis with obstacle avoidance Simulated,
transferred to real

LEGO Mindstorm Evolvable program (GP)

[110] Trianni and Dorigo, 2006 Coordinated locomotion with hole
avoidance

Simulated,
transferred to real

Swarm-bot Neural network
Table 6
Summary of ER research using environmental incremental fitness functions.

Citation Author(s)/Year of
publication

Task evolved/Learned Embodied/Real/Simulated Robot platform Evolved controller type/Algorithm

[37] Miglino et al., 1998 Goal homing with object
avoidance

Simulated, transferred to real Khepera Neural network

[35] Nakamura, 2000 Foraging with object carrying Simulation only Simulated
Khepera

Neural network
Table 7
Summary of ER research using competitive fitness functions.

Citation Author(s)/Year of
publication

Task evolved/Learned Embodied/Real/ Simulated Robot platform Evolved controller type/Algorithm

[10] Nolfi and Floreano, 1998 Pursuit and evasion Embodied Khepera Neural network

[21] Nelson and Grant, 2006 Competitive goal homing
with object avoidance

Simulated, transferred to real EvBot Neural network
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Table 8
Summary of ER research using aggregate fitness functions.

Citation Author(s), Year of
publication

Task evolved/Learned Embodied/Real/
Simulated

Robot platform Evolved controller type/Algorithm

[17] Hornby et al., 2000 Object pushing Simulated, transferred to
real

Sony AIBO Neural network

[64] Earon et al., 2000 Gait evolution Embodied Hexapod robot Kafka Evolvable state lookup tables

[16] Lipson and Pollack, 2000 Locomotion
(co-evolution of body)

Simulated, transferred to
real

Auto-fabricated modular
robots

Neural network

[65] Hornby et al., 2001 Locomotion
(co-evolution of body)

Simulated, transferred to
real

TinkerBot modular robots Actuator control parameter set

[32] Hoffmann and Montealegre,
2001

Locomotion with object
avoidance

Embodied LEGO Mindstorm Evolvable sensor-to-motor excitation
mapping

[66] Augustsson et al., 2002 Flying lift generation Embodied Winged robot Genetic programming

[67] Zufferey et al., 2002 Locomotion with wall
avoidance

Embodied Robotic blimp Neural network

[68] Macinnes and Paolo, 2004 Locomotion
(co-evolution of body)

Simulated, transferred to
real

LEGO-servo modular
robots

Neural network

[69] Zykov et al., 2004 Gait evolution Embodied Pneumatic Hexapod robot Gait parameter set

[70] Chernova and Veloso, 2004 Gait evolution Embodied Sony AIBO Gait parameter set
measure partial or overall task completion. At each generation
during the evolutionary process every network in the controller
population was tested on a real robot in a real environment.
Evolution performedwithout the use of a simulator, as in this case,
is referred to as embodied evolution. The researchers reported that
after the 50th generation, the fittest evolved neural network-based
controller performed the task at near optimum levels and was
able to travel around its environment indefinitelywithout colliding
with walls or getting stuck in corners.
A further experiment using the same platform was also

discussed in [11]. Neural networks were again evolved to control a
Khepera robot. The task for the robot was a periodic goal homing
behavior in which the robot was to travel about an arena for a
period of time and then move to a goal location and remain there
for a short time. The goal location was marked by a light source
and the robot was equipped with photosensors in addition to its
IR sensors. The motivation for the experiment was to evolve a
behavior that could allow a robot to return to a battery recharging
station, hence the robot was given a simulated energy level that
would fall to zero after a period of time. The fitness function
integrand used was

f = mean(v1, v2)(1− sir). (4)

Note that a robot that recharges its virtual energy level will achieve
a greater mean velocity over a long evaluation period than one
that runs out of energy too far away from the recharging station.
In addition, the recharge station was placed next to a wall so that
robots must spend time away from it to maximize the (1 − sir)
factor of f . As in the first experiment in [11], embodied evolution
was employed. Evolution of successful controllers took 10 h of
testing time with the real robot and represented 240 generations
with a population of 100 controllers.
In [13], experiments on a locomotion and object avoidance task

similar to the work presented in [11] were reported. Simple neural
networks with no hidden layers were evolved to perform the task.
The work also used the Khepera robot platform and evolution was
conducted using a behavioral fitness function integrand similar to
that used in [11]:

f = mean(vl, vr)(1− (vl − vr)2)(1− sir) (5)

where vl and vr are left and right drive motor speeds, and
sir is the greatest current activation level of the IR sensors.
Using a population of 100 neural network controllers, evolution
was initially performed in a simulation environment for 200
generations, and then optimized in a real robot for an additional
20 generations. Robots with the fittest evolved neural controllers
were reported to be able to perform their intended task reliably in
a real environment using the real robot.
[26] evolved four separate behaviors using embodied evolution

and genetic programming (GP). A Khepera equipped with 8 IR
proximity sensors was used. All of the fitness functions used were
behavioral and couched in terms of function regression mapping
sensor inputs to actuator outputs. The fitness functions used
did not use measurements of direct task completion for fitness
evaluation, but rather they selected for sensory-motor behaviors
that the researchers deemed would produce the ability to perform
the tasks. The behaviors evolved were forward motion with object
avoidance, object homing/following, wall following, and hiding in
the dark (light avoiding). The four fitness function integrands used
for the four behaviors follow respectively:

f(−) = sir − (vl + vr − |vl − vr |) (6)

where sir is the sum of the activations of all of the IR sensors and
vl, vr are the left- and right-hand motor velocities;

f(−) = (sir1 + sir2 + sir3 + sir4 − c)2 (7)

where c is a constant picked so that the robot will learn to follow
a distance behind the object such that the sum of the four forward
facing sensors is near c;

f(−) = (sir1 − c1)2 + (sir2 − c2)2 + sir32 − (vl + vr)2 (8)

where sir1 and sir2 are sensor activations on the wall-side of the
robot, sir3 is a sensor on the outward facing side, and c1 and c2 are
constants; and

f(−) = sphoto − (vl + vr − |vl − vr |) (9)

where sphoto is the activation of a photosensor. The authors report
successful evolution of these four behaviors, using purely reactive
and memory-based machine language GP formulations, but no
specific training data were presented.
For very simple tasks, one might define the task to be exactly

that which is accomplished by producing a particular sensory-
motor behavior. In cases where there is no distinction between an
overall task description and the low-level sensory-motor behavior,
the task will be classified as behavioral.
In [27], locomotion with obstacle avoidance in legged robots

was evolved. Robot controllers were evolved in a minimal
simulation environment and then transferred to a real robot for
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verification. The robot had IR sensors on the right- and left-hand
sides and a tactile bumper on the front. A behavioral fitness
function is used in this work and has four cases, each designed to
calculate fitness to perform a desired aspect of the task. The author
defines this in terms of an extended case statement. This can be
represented as an integrand of four terms with mutually exclusive
Boolean coefficients as follows:

f = B1(vl + vr)+ B2(vl − vr)+ B3(−vl + vr)+ B4(−vl − vr)
(10)

where vl and vr are the left- and right-hand-side velocities of
the robot, and B1–B4 are mutually exclusive Boolean coefficients
that are non-zero under the following conditions: B1 is non-zero
when no obstacles are in range of the IR sensors and the bump
sensor is not engaged, B2 is non-zero when there is an object
in range of the right-hand IR sensor, B3 is non-zero when there
is an object in range of the left-hand IR sensor, and B4 is non-
zero when the bump sensor is engaged. The target behavior is
defined at the level of sensor readings and robot body responses
in each of the cases and the fitness is formulated to select for
these only. Further, evolution took place in a carefully structured
minimal simulation environment in which only dynamics that
the designers believed would be relevant to an optimal solution
were reproduced. All other dynamics were simply structured to
produce a very low fitness in the simulated robot. As with a few
of the other evolutionary robotics experiments that used very
solution-specific fitness functions, in this work, a novel solution
cannot be considered to have been truly learned by the system.
Rather, the system has been programmed in a roundabout way to
reproduce a particular a priori known solution. Another unusual
feature of this work is that 3500 generations were used to develop
controllers that produced effective locomotion in the real robot.
This is between 10 and 100 times the number required for most
other similar reported experiments. However, it should be noted
that this is one of only a handful of research efforts to investigate
intelligent control learning in an octopod.
In [42], hexapod gaits were evolved using a real hexapod

robot. The behavioral fitness function used was one of the most
complicated found in the literature for the task of legged-robot
locomotion. We only summarize it here:

F = (strides)(1− overcurrent)(balanced)(1− bellytouch) (11)

where each of the terms is a function based on a combination of the
robot’s behavior and sensor inputs. The function strides counts leg
cycle movements, overcurrent measures actuator commands that
exceed the current capacity of the leg motors, balanced measures
the degree of tilt of the robot body, and bellytouch counts the
number of times the robot’s body falls low enough to scrape on the
floor. The hexapod was able to evolve efficient gaits within fifty
generations. As is the case with several of the other gait-learning
research examples, this robot had no sensors and thus did not learn
to react intelligently or dynamically to the environment per se. In
contrast to this very complex fitness function, similar examples of
gait learning have been achieved using aggregate fitness functions
(see Section 3.8).
A population of fuzzy logic rule-based controllers was evolved

in [43]. The robot task was locomotion and object avoidance. The
fitness function integrand includes a parsimony term to reduce the
number of rules in the controller fuzzy rule set:

f =
mean(vl, vr)(1− |vl − vr |)(1− sir)

|rules|
(12)

where vl and vr are left and right drive motor speeds, sir is the
greatest current activation level of the IR sensors, and |rules|
counts the number of rules in the controller’s fuzzy logic rule set.
A population of 100 individuals was evolved for 100 generations
in a real Khepera robot, and the authors report that successful
controllers able to travel around their environment without
colliding with obstacles are developed by the 60th generation.
In [15] genetic programming was used to evolve locomotion

and object avoidance in Khepera robots. A behavioral fitness
function was used and is given by

f = c(|vl − vr | + |vr | + |vl| − (vl − vr))+
∑
sir (13)

where vl and vr are the left and rightwheelmotor speeds, and
∑
sir

represents the sum of the activations of the proximity sensors. The
authors used an extremely large population size of 10 000 and ran
evolutions for 250 generations. They repeated evolution runs 100
times in simulation starting with different seed populations and
reported that 82 out of the 100 runs produced useful controllers
able to perform the task of obstacle avoidance while traveling
about a small environment with a single circular path.
Controllers for a wall-following behavior were also evolved

in [15]. A very complex conditional fitness selection method that
specifies desired responses to possible sensor activation patterns
was used. This fitness selection method essentially specified the
solution to be evolved and injected a very high level of a priori
knowledge into the evolved controllers.
The authors of [44] describe an object-pushing task in terms of

a sumo-robot behavior. Controllers were evolved to push objects
out of an arena. GP was used to evolve controllers composed of
behavioral primitives such as ‘‘more forward’’ and ‘‘left-hand turn’’.
The fitness function integrand used here counts the number of
active sensors, the number of arms in contact with the object, and
the number of arms holding the object:

f =
∑
sactive +

∑
armsholding +

∑
armstouching (14)

where
∑
sactive is the number of active proximity sensors,∑

armsholding is the number of arms applying side pressure to the
object, and

∑
armstouching is the number of arms in contactwith the

object. The researchers reported that the robot was able to learn to
push objects using the fitness function in (14).
[45] presents the evolution of a phototaxis and object avoidance

behavior in a robot equipped with sonar and photosensors. A
genetic programming structure implemented on an FPGAwas used
for the controller architecture. The behavioral fitness function used
here is unusual in that it includes fitness values measured at
previous time steps. The function is summarized as:

ϕ(t + 1)

= c1

(
ϕ(t)+ c2(sphoto_max − sphoto)+ c3

∑
ssonar

ssonar_max
+ c4

)
(15)

where sphoto, sphoto_max,
∑
ssonar, ssonar_max are the forward photo-

detector excitation, the maximum photo-detector excitation, the
sum of the sonar sensor excitations, and the maximum sonar
excitations respectively. Notation note: the function is not in the
form of an integrand (f ) or an overall function (F), rather, it
is presented in the original work as a recursive function and is
here denoted by ϕ. Learning required 300 generations in addition
to a 35-generation sensor tuning phase to develop functional
controllers for the task.
[46] also evolved controllers for locomotion and object

avoidance. The evolvable controller architecture was described in
terms of artificial chemistries, a form of optimization algorithm
based on the concepts of binding and reaction of compounds in
chemistry. A Khepera with IR sensors was used. The evolvable
controller architecture was a form of evolvable directed graph
similar to a finite state machine. A behavioral fitness function with
one term was used. The fitness function integrand minimizes the
sum of differences between wheel speeds:

f(−) = |vl − vr | (16)
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where vl and vr denote the right and left wheel motor speeds. Note
that unlike most of the other locomotion and object avoidance
experiments, no sensor activation term was used here, but the
controllers still evolved successfully over the course of 160
generations. Controllers were evolved in simulation and the best
resulting controllers were transferred to a real robot and tested in
a small maze environment.

3.3. Functional incremental fitness functions

In this section we present ER research that used incremental
fitness functions (summarized in Table 4). Recall that incremental
fitness functions begin the evolutionary process in a form that
selects for a simpler behavior than the final desired behavior, and
then change their form to select for complex abilities. The function
may change forms several times before the final task or behavior
is achieved. To begin with, we will discuss early research from the
mid-1990’s in some detail (in particular the research performed at
the University of Sussex [9]).
In [9] a differential goal homing task was investigated in which

a robot must move toward a triangular target placed on a white
wall while avoiding a rectangular target. The robot used in this
work consisted of a cameramounted on an X–Y positioning gantry
system. The gantry was placed over an arena, and evolution was
performed with trials evaluated using the physical system. The
work used a three phase functional incremental fitness function.
The first sub-function maximized the distance from the arena

wall opposite the target by summing the robot’s current distance
from the wall (dwall) at 20 time points over the course of a trial:

F1 =
20∑
i=1

dwall. (17)

Here, we explicitly include the summation over 20 steps since it
does not represent a true averaging of fitness and is trial-time
dependent. F1 might be considered a behavioral function. After
fitness converged using F1, the fitness function was replaced with
F2 and evolution was continued with a new population derived
from the best-performing member of the first evolved population:

F2 =
20∑
i=1

(−dtarget). (18)

F2 is maximized when the distances dtarget to the target (measured
over the course of a trial) are minimized. F2 might also be
considered a behavioral function because it does not explicitly
measure task completion. Note that the final form of an
incremental fitness function can be classified as one of the non-
incremental forms from the classification system of Section 2, but
the intermediate forms are not necessarily classifiable unless they
are intended to generate a specific behavior or task.
Likewise, a third fitness function was applied to a population

derived from the best performing member of the previous
population. Here, the single target was replaced with two targets,
one triangular and one rectangular. F3 is maximized when the
distance from the triangular target is minimized and the distance
from rectangle target is maximized (measured at 20 time points
over the course of each trial):

F3 =
20∑
i=1

(c1(D1 − d1i)− c2(D2 − d2i)) . (19)

Here c1 and c2 are experimentally derived coefficients, D1 and
D2 are the initial distances from the triangular and rectangular
targets respectively, and d1i and d2i are the test point distances
measured over the i time steps of each trial. Dynamic recurrent
neural networks were evolved and were provided only two inputs
from the camera. The areas within the camera’s receptive field that
led to activation of the two network inputs were also modified
by the evolutionary process. Successful evolution of controllers
capable of identifying and homing in on the correct target was
reported after a total of 60 generations (20 generations using each
of the three fitness functions). The three functions used might be
considered together to be behavioral fitness functions because they
do not measure task completion directly.
In [33] functional incremental evolution was applied to evolve

a box-pushing and goal homing behavior for a Khepera robot.
Genetic programming was used and controllers were encoded by
tree representations that generated purely reactive controllers. A
series of three incremental functions were applied to evolve the
final behavior. Note that the authors minimized these functions
during evolution rather than maximizing them. The fitness
function integrands f1(−) and f2(−)were used to evolve the separate
primitive behavior controllers of pushing a box in a straight line
and box circumnavigation, respectively. f1(−) is given by

f1(−) = c1(1−mean(vl, vr))+ c2(|vl − vr |)+ c3(1− sf _ir) (20)

where vl, vr , c1, c2, and c3 are used as in the previously presented
standardized fitness function forms, and sf _ir is the average current
activation level of the two forward-most IR sensors on the robot.
f2(−) is given by

f2(−) = c1(1−mean(vl, vr))+ c2(|ss_ir − c3|) (21)

where ss_ir is the activation of a particular one of the IR sensors on
one side of the robot that the designers chose to act as a distance
regulator between the box and the robot. The constant values c1,
c2, and c3 selected in f1 are different than those selected in f2.
Both functions can be classified as behavioral. A third controller
evolution was performed to generate an arbitrator controller that
was responsible for turning the primitive behaviors on and off, to
produce the final goal homing behavior. The fitness function used
was

F3 = dbox,goal (22)

where dbox,goalmeasures the distance between the box and the goal
location (indicated by a light source) at each time point during an
evaluation trial. The final form of the function could be considered
aggregate if the task were defined as getting the box as close to
the goal as possible. It should be noted that only the primitive
behaviors were tested in real robots, so it is not clear that the final
evolutionary step was entirely successful.
The research reported in [71] used a two stage functional

incremental fitness function to evolve locomotion and object
avoidance abilities in a hexapod robot constructed using hobby
servos. The robot was equipped with IR and photosensors. The
overall behavior was evolved in two steps. First, legged locomotion
was evolved using a fitness function of the form

F1 = c1d+ c2L (23)

where d is the maximum distance achieved by the robot and L is
a measure of activation to the leg actuators (the exact forms of
the fitness functions used are not explicitly stated by the authors
and the functions presented here were extrapolated from the
text descriptions). The second stage of evolution generated object
avoidance and made use of a simple single-term fitness function,
F2, for selection:

F2 = dcollision (24)

where dcollision is the distance covered by the robot before it hits
an obstacle during a given evaluation trial. Note that this is very
close to being an aggregate fitness function but it does notmeasure
full task completion directly. It makes the implicit assumption that
avoiding collisions will result in the best locomotion. Controllers
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were evolved in simulation and transferred to a real hexapod
robot for testing. A neural network for locomotion was generated
in the first phase of evolution, and then a second network was
piggybacked on the first and evolved to generate the final collision
avoidance behavior. It is not clear from this particular work how
many generations were needed for each step of evolution.
In [36] populations of neural network-based controllers for

Khepera robots were evolved to perform goal homing (phototaxis)
and obstacle avoidance using incremental evolution in two stages.
For this experiment, the robots used photosensors and IR sensors,
but neural connections for the photosensors were not introduced
until the second stage of evolution. Initially, controllers were
evolved for straight-line motion with obstacle avoidance using the
following fitness function integrand:

f1 = c1(vl + vr)− c2(|vl − vr |). (25)

The best controllers resulting from f1 were then used as a seed
population and were evolved further with f2:

f2 = c1sfront + c2 (|sfront − sback|) (26)

where sfront and sback are the activation levels of the forward and
backward photosensor arrays respectively. A population of 30
network controllers was evolved first for 100 generations with f1
and then for an additional 100 generations with f2. Both of these
fitness functions are classified as behavioral.
The experiments discussed in [36] also contained an aspect of

environmental incremental evolution. The experimenters placed
additional obstacles in the environment and reduced the number
of goal light sources over the course of evolution. This provided
an environment of incrementally increasing difficulty. The best re-
sulting controllers were tested in real robots and were demon-
strated to be able to home in on a light source in environments con-
taining obstacles (walls) arranged to force the robot to backtrack,
and at times to explore dead ends in order to find the light source
goal. [34] presents the evolution of a flight controller for beacon
homing and circling. The controllers were evolved in simulation
and then tested in a real ground robot that homed in on and cir-
cled a sonic beacon (EvBot II equipped with directional sound sen-
sors). A combination of incremental and multi-objective selection
was employed, using the following fitness function integrands:

f1(−) =
d
d0

(27)

f2(−) = Binranged2 (28)

f3 = (1− Binrange)Blevel (29)

f4(−) = B10◦turn |θ(t)− θ(t − 1)| (30)

where d0 is the initial position of the robot, d is the current position
of the robot, and θ(t) gives the roll angle of the robot at time
t . Binrange, Blevel, and B10◦turn are Boolean functions that are true
when the robot is in range of the beacon, when the robot is
level, and when the turn angle is greater than 10 deg respectively.
Note that f1, f2, and f4 are minimized while f3 is maximized.
Initially, f1 was used to bootstrap evolution for 200 generations.
After a level of homing confidence was gained, multi-objective
optimization used all four fitness functions for 400 generations.
In someways, multi-objective optimization raises questions about
the relationship between task definition and the definition of
aggregate selection. If the task is explicitly defined in terms of
solution features and the designer formulates these features into
a set of multiple objectives, then this set of multiple objectives can
be considered an aggregate selection mechanism when viewed as
a whole. However, the choices made about which features of the
solution should be jointly optimized, and the formulations of the
functions for the objectives, requires a considerable amount of a
priori task solution knowledge.
3.4. Tailored fitness functions

Tailored fitness functions contain aggregate terms thatmeasure
some level of task completion, but they may also contain
behavioral terms. Aggregate functions that measure nothing but
final task completion are classified separately and are presented in
Section 3.8 of this section. Research using tailored fitness functions
is summarized in Table 5.
In [47], Fuzzy logic rule sets were evolved to control a robot

performing a goal homing and object avoidance task. A tailored
fitness function with no behavioral terms was used.
The overall fitness functionwas stated in terms of twomutually

exclusive cases, each with its own sub-function:
Case (1) A collision occurs:

Fcollision =
tcollision
tmax

(31)

where tcollision is the time at which the collision occurred and tmax
is the maximum allowable number of time steps.
Case (2) No collision occurs:

Ffree =
(
1−

d
d0

)
(32)

where d is the distance remaining between the goal and the robot,
and d0 is the initial distance between the robot and the goal at the
beginning of the trial. A trial ended if a collision occurred, if the
robot arrived at the goal location, or at tmax.
After 30 generations controllerswere evolved thatwere capable

of reaching the goal location without collision in approximately
50% of the trials. This level of success is lower than that reported in
other similar work [36,37], but at the same time, the evolutionary
process was only allowed to continue for 30 generations. It is
possible that controller populations had not yet converged.
In [48] the author evolves a simple locomotion with wall

avoidance behavior in a robot using an evolvable hardware control
system. The following tailored fitness function integrandwas used:

f = e−c1(dx)
2
+ e−c2(dy)

2
+ B (33)

where dx and dy are the distances from the center of the arena to the
robot’s current position, and B is a Boolean whose value is 1 if the
robot is moving and 0 otherwise. The function is intended to keep
the robot away from its starting position (the middle of an arena)
and also keep it moving. This work was performed in a laboratory
robot using sonar sensors. An unusual real robot and simulator
evolutionary setupwas used here. A real hardware controller using
an FPGA was attached to a real robot during controller evaluation,
but the robotwas placed on a platform that did not allow itswheels
to touch the floor. Wheel movements were measured and then
fed into a simulator for final fitness evaluation. The motivation for
doing this was to avoid simulating the entire dynamic controller-
robot hardware system, but still allow the evolutionary process
to proceed in a fully automated way. Functional controllers were
evolved in 35 generations and tested in the real robot operating in
a real environment.
In [28] an agent-herding task was investigated. A shepherd

robot was evolved to herd a single agent with a fixed control
strategy into a goal area. This work used two Nomad 200 robots,
and along with [50] is one of the few evolutionary robotics
experiments to use full-sized laboratory robots. The evolved
control strategies consisted of a set of sensory stimulus-motor
response rule sets. Controller rule sets were evolved in simulation
and tested in the real robots. Fitness was measured in terms of
percent, denoting partial or full success: 100% was given if the
robot herded the sheep agent into the goal area before t reached
tmax. A constant c% was given if the robot herded the sheep agent
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towithin a predefined distance of the goal areawhen t reached tmax
(with c selected to be less than 100 but greater than 0), and 0%was
given in all other cases. This is essentially a tailored fitness function
with two aggregate terms. In tests of the best evolved controller in
the real robots, the herding robot was able to herd its companion
robot into the goal area in 67% of test cases.
[14] reports on the evolution of a task in which a robot

must pick up pegs in an arena and deposit them outside the
arena. A Khepera robot with an attached gripper unit was used
to test controllers evolved in a simulation environment. Sub-
behaviors were identified and evolved (and one was hand-coded).
A master coordination module was evolved to generate the final
overall behavior. The method of fitness evaluation used here was
extremely complex and must be considered more of a tailored and
behavioral algorithm than a single function. Although in theory
there could be many methods of performing the target task, the
fitness selection algorithm allowed only one overall solution to
evolve: the robot wanders through the arena environment until it
detects a peg, it picks up the peg, it moves to the edge of the arena,
and it drops the peg. The authors performed 10 separate evolutions
of 1000 generations, using a population size of 100 individuals.
They report the emergence of individuals capable of completing
the task reliably (in over 90% of attempts) in simulation and in
testing on the real robot. The peg collection and deposition task
evolved here is among the most complex achieved to date. [35]
investigated an almost identical task in simulation only, but used
an aggregate success/failure fitness function in conjunction with
environmental incremental evolution (discussed in Section 3.6 of
this section).
[29] presents the evolution and testing of FPGA hardware

controllers for a small robot with two cameras. The robot’s task
was to home in on a target object in an environment containing
additional obstacles. The tailored fitness function required 64
full evaluation periods to be completed before application, and
included an aggregate term that counted the number of outright
completions of the task:

F64_trials =
64∑
1

(
Bgoal_found + c1

(
1−

dgoal
dmax

)

+ c2

(
1−

tgoal
tmax

))
(34)

where Bgoal_found is a Boolean that is true if the robot found the
target object during that trial, dgoal is the remaining distance
between the robot and the goal at the end of the trial, tgoal is
the number of time steps required to find the goal and dmax is
the greatest travel distance (linear offset) that can be achieved
in the training environment. Several variations on evolutionary
conditions and methods were investigated, and the reader is
referred to the paper [29] for a description of these. Using the
most successful evolution strategy, the authors report that the best
controllers fromapopulation of 20 evolved for 650 generations and
tested on a real robot were able to complete the task of finding
the target object in a fairly complex environment containingmany
walls and starting from 64 separate initial positions within the
environment.
In [49], controllers for Khepera robots were evolved for an

object pushing and phototaxis task. In this task, robots locate pegs
(small cylinders) within an environment and then push them to
a goal location marked by a light source. For this experiment, the
controllers were evolved in simulation and then transferred to real
robots. The authors used the following fitness function:

F = c1

(
1−

df (peg, goal)
d0(peg, goal)

)2
(35)
where d0 and df measure the distance between the peg and the
goal light source at the beginning and the end of an evaluation
trial. F falls into the class of tailored fitness functions because it
measures some degree of success. The function does not inject a
high degree of a priori knowledge into the controller strategies.
In addition, as denoted by the upper case F , this is the full
fitness function, not an integrand. In [49], populations of 100
standard feedforward networks and 100 partially Hebbian neural
controller architectures were evolved in separate experiments for
200 generations. Following evolution, the qualities of the resulting
controllers were compared. The best-evolved Hebbian controllers,
which allow for some modulation of behavior during controller
evaluation (often referred to as lifetime learning [87]), were more
robust to noise in the robot’s actuator system. The best Hebbian
controllers were able to complete the task in 92% of trials (with
actuator system noise) while the standard feedforward networks
were only able to complete the task 75% of the time.
A controller for locomotion with object avoidance was evolved

in simulation and transferred to anRWIB21 service robot equipped
with sonar [50]. This robot is larger than most robots used in ER
work (over a meter tall) and was tested in a building hallway,
rather than in small specially constructed arenas used in other
work. GP was used to evolve populations of controller programs
and the authors formulated a complex fitness function for the
relatively simple task. The tailored fitness function used here
maximized time of motion while minimizing overall rotation of
the robot over the course of a trial evaluation period. This can be
written as:

F = 1−
t
tmax

√ ∣∣∑ r∣∣
ωnettmax

(36)

where t is the time of the first collision, tmax is the maximum
time allotted for an evaluation period,

∑
r is the sum of all

discrete rotations made by the robot, and ωnet is the average
angular velocity over the course of an evaluation period. One of
the controller evolutions was performed on the real RWI B21 robot
and required approximately 200 h of evolution time to perform 50
generations with a population size of 75. This highlights the need
for high quality simulators if ER is to be used to generate controllers
for robust robots operating in non-laboratory environments.
In [20] the authors report on the embodied evolution of a robot

behavior in which a Khepera robot moves to an intermediate goal
zone and then to a final home goal position.When the robot arrives
at the intermediate goal position a light source is triggered. The
authors used a simple tailored fitness function that injected limited
amounts of a priori knowledge into the evolved solutions:

F =
tgoal
tmax

(37)

where tgoal is the number of time steps spent in the home goal
position after the light has been triggered, and tmax is the total
number of time steps per trial. As in [49], Hebbian neural networks
were evolved for the task, and the learning rates of the networks
were evolved, rather than the connection weights. Hence, the
controllers were evolved to learn how to perform their task
while in operation. Using a population size of 100 individuals,
500 generations were required to evolve competent networks.
After evolution using Khepera robots, the fittest evolved networks
were tested in Koala robots with similar sensor and actuator
architectures and were found, as in [49], to be robust against
changes in actuator response.
[52] describes experiments that evolve neural controllers for

a box-pushing task. Here, the robot (a Khepera with IR sensors)
must push an object toward a light source. The authors evolved
separate populations of controllers using four different fitness
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function integrands and then compared the quality of the evolved
controllers. The four fitness functions are given by:

F = dbox −
1
2
dbox,robot (38)

where dbox is the total distance that the boxmoved, and dbox,robot is
the final distance between the box and the robot;

f = 1dbox −
1
2

(
1dbox,robot

)
(39)

where1 (delta) indicates change over the current time step;

f = c1(sir2 + sir3)+
(
1− c2

∑
sphoto

)
(40)

where sir2 and sir3 are the forward facing IR proximity sensors and∑
sphoto is the combined activation of 4 photosensors;

f = c1(sir2 + sir3)+ c2 |vl + vr | − c3 |vl − vr | (41)

where vl and vr are the left and right wheel motor speeds.
All of these fitness functions converged upon a solution within

250 generations, using a controller population size of 30. The
first and simplest function was reported as generating the best
solutions. Only the controllers evolvedwith the first function were
demonstrated in the real robot. Also, of the four fitness functions,
the first contained the least a priori information about the task.
This is interesting, and indicates that assumptions the researchers
made about what features a good solution should have may not
have actually been helpful in generating better solutions.
In [53], gaits were developed for a biped robot built from

hobby servos. Embodied evolution was used to optimize a set of
12 gait parameters. The robot’s vision and IR sensors generated
information needed for fitness evaluation:

F = vD(θ). (42)

Here v is the average velocity of the robot over the trial period
and D(θ) is a function that measures angular change in the robot’s
heading. D has a somewhat complex formulation but essentially
rewards controllers that produce less rotation. F is used here to
indicate that this is the complete fitness evaluation function, not
an instantaneous integrand that is averaged or integrated over a
trial period. This work started evolution with a working hand-
formulated controller, and hence represents optimization rather
than primary synthesis.
[54] investigated the evolution of three basic behaviors in

the context of eventually learning more advanced behavioral
coordination mechanisms. The behaviors were photo-orientation,
object avoidance, and robot homing (come into proximity of
another robot in the environment). Robots builtmainly fromLEGOs
and equipped with IR, tactile and photosensors were used to
implement a fully embodied evolution scheme. For each task, a
simple tailored fitness function was used during evolution. The
fitness functions are listed below:

Fphototaxis =
∑
tlight
tmax

(43)

where
∑
tlight is the number of time steps in which the robot was

facing the light source, and tmax is the total number of time steps
in the trial;

Favoidance =
∑
ts

tmax
(44)

where
∑
ts is the number of time steps in which none of the IR

sensors report activation; and

Fhoming = tmax − tcomplete (45)
where tcomplete is the amount of time required to position the robot
in proximity to another robot in the environment. The authors
report successful evolution of behaviors within 30 generations
for each of the three tasks. Unlike most of the other work
reviewed, the genetic programming and controller structures
used here contained some very high-level primitives, such as
obstacle avoidance. It is unclear howmuch of the resulting control
strategies were truly learned, and howmuchwas encoded into the
GP structure and learning environment.
In [12] a phototaxis task in which robots learn to home in

on a light source was investigated. Evolution was performed in a
population of eight real robots using an asynchronous algorithm
and a tailored fitness function. By asynchronous we mean that the
evolutionary algorithm did not employ any specific generation or
epoch period. Rather, a controllermight propagate as soon as it had
achieved a high enough fitness level, regardless of what the other
controllers were doing. During evolution, fitness was considered
to be the current energy level of each robot and increased each
time the robot reached the light source, and decreased during
reproduction when a robot would broadcast its genes to other
population members. The fitness function ϕ calculates the energy
level and is updated at each time step. It can be summarized as
follows:

ϕ(t) = ϕ(t − 1)+ c1Breward − c2Bpenalty (46)

where t is time, Breward is a Boolean that is true in any time
step when the robot reaches the light source, and Bpenalty is a
Boolean that is true in any time step where the robot broadcasts
its genes. The fitness is limited to amaximum value. The algorithm
is fully asynchronous and there is no population-wide trigger for
reproduction. Reproduction (broadcasting and receiving of genes)
is governed probabilistically based on robot energy (fitness) levels.
After about 100 min of evolution, fitness improvement in the
population leveled off. Controllers capable of approaching the light
source using a variety of strategies were reported.
In [56] embodied evolution was used to generate neural

network controllers for locomotion and wall avoidance in a Koala
robot equipped with a vision system. The authors used a simple
fitness function integrand that maximized the forward velocities
of the wheel motors:

f = (vl + vr)− (|vl − vr |) (47)

where again vl and vr are left and right drive motor speeds. Fitness
was integrated over the time steps of a trial, and then integrated
again over a given number of trial periods. Note that unlike the
works of [11,13], no explicit sensor activation term was used. This
allowed the evolutionary process more freedom to evolve novel
solutions. The underlying task investigated here is quite simple,
and has been studied in many previous research efforts. In most
previous work, though, IR and photosensors were used. Here, a
grey-scale image from the vision system was partitioned into a 5
by 5 grid, and the average light level of each grid cell was used as
a network input. Using a population of 40 neural controllers, fit
controllers able to navigate around the simple environment were
evolved within the physical environment in only 15 generations.
[30] discusses the evolution of a coordinated movement task in

which three robots must move together in formation. The robots
used a typical differential drive systemand eachhad four IR sensors
for detection of the environment. The authors use a relatively
complex tailored fitness function given by

F = P
T max∑
1

(
Dgain(d, dbest)

(
1+ tanh

(
S
20

)))
(48)

where P is a collision penalty term that decreases toward 0 as
the number of collisions increases, Dgain is a function of present
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distance d and trial-best distance dbest, and S is a measure of team
dispersion. In this case we included the summation term explicitly
in the fitness function representation because the collision penalty
factor P is applied after the integration over the evaluation
time period of the other elements of fitness evaluation. The
function is represented by an uppercase F , in accordance with the
nomenclature used in this paper. The function is relatively selective
for a class of a priori known solutions, but is not explicitly selective
for an exact known solution. In [30] the authors used a population
of 50 controllers and ran 100 separate evolutions. They report that
in every evolutionary run, a fit controller eventually arose that was
capable of achieving the group locomotion task in simulation, and
also when tested in the three real robots.
[57] studied the evolution of locomotion and object avoidance

behaviors using evolvable hardware controllers (FPGA). Embodied
evolution was used and fitness evaluation was performed in a
physical Khepera robot with FPGA turret. The following fitness
function was used:

F = c
d(1−

∑
s)∑

rev
(49)

where d is the distance traveled by the robot,
∑
s is the sum of

all sensor activations, and
∑
rev counts the number of discrete

motor direction reversals. This fitness function is related to the
behavioral functions used for locomotion and object avoidance in
earlierworks [11,13,56], but here, distance traveled d (an aggregate
term) is used, rather than wheel motor speeds. The authors also
include the unusual behavioral term

∑
rev counting the number

of motor reversals over the course of a trial period. Successful
controllers were evolved within about 20 generations.
As part of a larger layered control architecture, in [58] the

authors evolved fuzzy logic controller modules for object (ball)
homing behaviors in a Sony AIBO. Here an evolvable fuzzy logic
controller architecture was evolved for control. A tailored fitness
function with three aggregate terms of the following form was
used:

F = (1− c1d)(1− c2agoal)(1− c3tgoal) (50)

where d is the final distance between the target object (a
ball) position, agoal is the final angle between the target object
position and the robot’s head, and tgoal is the amount of time
elapsed during the trial. c1, c2, and c3 are chosen to normalize
the various factors. Note that this fitness function implicitly
includes a stopping condition when the target is found. Unlike
many other ER experiments, this particular work included a fair
amount of hand-coded control elements, including sensor fusion
and object identification, and predefined gaits. In the fuzzy logic
controllers, the antecedents of the rules were predefined, while
the consequences of the rules were evolved, and this may have
introduced a high level of additional a priori task knowledge into
the resulting evolved controllers. The task of object homing was
evolved in the real robot in 20 generations using a population of
only 10 individuals.
Neural network controllers for object avoidance and locomo-

tion were evolved using embodied evolution in a system of six
real robots and also in a simulated version of the system [55]. The
robots were custom-built differential drive systems with IR and
tactile sensors. Fitness over a given trial period was calculated us-
ing the following set of rules: (1) Start with 4096 points; (2) Re-
ceive 10 points for each second of forward movement; (3) Lose
30 points for any occurrence of a forward motion command that
is shorter than 15 s in duration; (4) Lose 10 points for each colli-
sion that occurs in conjunction with a forward motion command.
In terms of selection, this set of rules produces an effect similar
to some of the other behavioral and tailored fitness functions but
it is unusual in that it includes actual motor commands explicitly.
Element 2 makes the function tailored since it measures a degree
of task completion. Elements 3 and 4 are behavioral terms. As in
the case of [12] the evolutionary algorithm studied in [55] was in-
tended to operate within the six physical robots. During each gen-
eration, the fittest robot controller was transferred to the other
five robots where it was combined with the local controller using
crossover. The authors explored various mutation rates, including
a form of periodic macro-mutation couched in terms of predation.
Robot controllers able to maximize the fitness function arose dur-
ing the course of 200 generations in experiments run in the real
robots.
[59] discusses the evolution of locomotion and object avoidance

behaviors using an EvBot robot equipped with 5 binary tactile
sensors. The EvBot robots [96] are small cylindrical robots between
15 and 25 cm in diameter, and can be equipped with a variety of
sensors. These robots have more computing power than typical
robots of this size and generally run full PC operating systems as
well as high-level computing packages onboard. Neural controllers
were evolved to perform the navigation task, and a tailored fitness
function was used:

F = c1dnet + c2dmax + c3darc_length − c4Bstuck (51)

where dnet measures the offset distance between the robot’s
starting and its final position, dmax measures the greatest distance
achieved by the robot at any time during the trial, darc_length is the
line integral arc length of the robot’s path over the course of a trial
and Bstuck is a Boolean that is true if the robot becomes permanently
immobilized during the trial. Because only five binary sensors
were used to detect the environment, the robot’s perceptual space
contained only 32 distinct states, hence a simple reactive controller
would be sub-optimal. To compensate for this, recurrent neural
networkswith several hidden layers and capable of temporal signal
processing were used. The authors report that effective controllers
were evolved in simulation and tested on real robots using a
population size of 20 controllers and required on the order of 3000
generations. This number of generations is quite high compared
to much of the other ER work surveyed, but at the same time,
most otherwork resulted in the evolution of simple controllers that
were purely reactive. The controllers in [59] evolved time-memory
control solutions that compensated for the extreme temporal
aliasing introduced by the binary tactical sensor system used.
Gaits for a biped servo-bot were evolved in simulation and

then demonstrated on a real biped robot in [60]. Evolvable spline
controllers were used in this work. Splines controlling each joint
actuator were coordinated based on gait cycle time, and the
evolutionary process altered each joint actuator spline’s defining
control point parameters. During evolution, a tailored fitness
function that measured how far the robot moved was used:

F = c1d− c2vbody_lowering (52)

where d is the distance traveled by the robot and vbody_lowering is
the average downward motion of the robot’s torso. This term is
included to reduce the amount of body movement of the robot
to create a smoother gait. This fitness function is classified as
tailored because itmeasures a degree of success of task completion,
i.e. how far the robot moved, regardless of how that movement
was achieved. The second term of the function is a behavioral term
that selects for gaits with minimal movement in the torso. As with
some, but not all, of the research into gait learning, in this work
no sensors were used and the robots did not learn to dynamically
interact with their environment. The evolved controllers were able
to generate balancing andwalking both in simulated and real biped
robots.
Gaits for a Sony AIBO robot were evolved using embodied

evolution in [61]. A gait parameter set was evolved. The fitness
function used is very similar to the one used in [53] and derived all
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required information from images received from the robot’s head-
mounted camera:

F = vD(θ). (53)

Here v is the velocity of the robot over the trial period and
Dθ ) is a function that measures change in the robot’s heading.
D rewards controllers that produce less rotation. Robots were
reported to travel at speeds of 1 m/min using the best evolved
set of gait parameters. Although images from the robot’s camera
were used during evolution to determine fitness, the robot did not
learn to react to an object or other elements of its environment
based on sensor information. As in many of the other gait-learning
experiments, the learned control was not dynamic with respect
to the environment. The evolutions required between 300 and
600 generations using a population of size 30. This number of
generations is quite high compared to other embodied work.
In [62], controllers for locating and pushing objects toward a

goal region were evolved in simulation and then optimized in real
robots. A form of Q-learning was used, in addition to a genetic
programming phase, for a hybrid system that cannot be purely
labeled as evolutionary robotics. In order to accommodate the Q-
learning phase of control learning, a state space was formulated
based on a classification of images from the robot’s camera.
Further, the robot’s possible actuator command set was similarly
formulated into a finite set of states. A complicated tailored fitness
function was used and is summarized by:

F = c1Bgoal + c2

(
1−

moves
movesmax

)
+ c3

(
1−

turns
turnsmax

)
+ Bbox_moved + Bgoal_seen −

goal_lost
tmax

(54)

where Bgoal is a Boolean function that is true if the robot moves
the object to the goal area before the trial period is over, moves
is the number of linear moves made by the robot, turns is the
number of turningmovesmade by the robot, Bbox_moved is a Boolean
function that is true if the robot manages to move the object at
all, Bgoal_seen is true if the robot positively detects the goal region
at any time during the trial, and goal_lost counts the number
of times the robot turns away from the goal region after it has
first detected it. The terms movesmax, turnsmax and tmax refer to
maximum allowable numbers of moves, turns and time steps
per trial period respectively. These three terms were set by the
researchers based on their expertise and understanding of the
experimental setup. In [62], the authors reported that successful
controllers were generated in simulation and then tested and
automatically optimized in real robots.
A relatively difficult sequential task in which a robot must

visit three goal locations in a specific order is investigated
in [22]. Populations of small recurrent neural networks (6–10
neurons) were evolvedwith an extendedmulti-population genetic
algorithm.Most other ER researchers use single population genetic
algorithms, and the work in [22] compared the two forms of
evolution and reported superior results using multi-population
evolution. During a given trial period, fitness is updated by:

ϕgoal_position =

{
1 if in sequence
−1 otherwise. (55)

Here fitness is updated only when the robot reaches any one
of the goal locations. An additional single overriding behavioral
condition is also included: a robot that produced only spinning-
in-place behaviors is given -30 points. The main fitness function
contains relatively little a priori task solution knowledge and
uses only information related to the completion of the cycle
of goal visitations. Successful controllers were evolved after 50
generations using populations of on the order of 200 individuals.
This is well within the range of generations required for evolution
reported by other researchers for other less complex tasks.
Controllers capable of performing a phototaxis task in an

environment with many occluding obstacles were evolved in [63].
A robot constructed from LEGOMindstorm kits and equipped with
two photosensors and a single forward-mounted tactile sensor
was used. A simple tailored fitness function was employed, and is
given by:

F = d2max − d
2 (56)

where dmax is the largest dimension of the training environment,
and d is the final distance between the robot and the light source
after an evaluation trial period. The authors report successful
evolution of controller programs after 350 generations and using a
population size of 64. Control programswere evolved in simulation
and then tested in the real robot. The best evolved control program
was reported to be able to complete its task (finding a light source)
in all 15 trials in the real robot.
In recent work [110] neural network-based controllers were

evolved to perform a coordinated group movement task in
which interconnected robots travel together in an environment
containing holes. An aspect of robot–robot communication was
involved in this work, and robots were given the ability to produce
and receive signals in the form of a tone. To perform the task,
the robots (arranged in a square) must move in as straight a
line as possible while maintaining formation and avoiding holes.
Evolution of controllers was performed in simulation and then
evolved controllers were tested in physical robots. A complex
tailored fitness function that combined individual robot fitnesses
and success at hole avoidance was used. The individual robot
fitness was measured using a function similar to Eq. (3) but with
additional tailored factors. This function included elements that
selected for rapid movement using a normalized version of the
first factor of Eq. (3), straight movement using the second factor of
Eq. (3) with a zero-floor condition, as well as a factor that
measured the degree of coordinated traction force produced by the
robots. The function contained additional factors that measured
the degree of ground sensor activation (used to detect the holes)
and a term intended tominimize robot–robot communication. The
fitness of the robot group was 0 if any member of the group fell
into a hole, and a function of the lowest individual robot fitness
otherwise. In addition to the explicit fitness function used in this
work, three separate environments, two of which did not contain
holeswere used during evolution. Although each fitness evaluation
trial combined results from all three environments, in some
respects, this represents a form of environmental incremental
evolution (discussed in Section 3.5) since robots could realize
fitness gains early in evolution by improving simple locomotion
abilities in the environments without holes.

3.5. Environmental incremental fitness functions

Environmental incremental evolution (research listed in
Table 6) differs from functional incremental evolution in that the
difficulty of the environment is augmented, and not the fitness
function. Potentially, this can produce controllers evolved with
aggregate selection and less explicit human bias. Some degree
of human bias is still injected into the evolving controllers due
to the selection of the various incrementally more challenging
environments.
In [37] a goal homing and object avoidance behavior was

evolved using a robot equipped with IR sensors and binary
photosensors. Neural network controllers for the robot were
evolved in two sequentially more difficult environments. The first
environment included a single simple wall-like obstacle, while the
second contained a concave cul-de-sac obstacle that required the
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robot to learn to initially backtrack away from the goal in order to
eventually approach it. The fitness function integrand used in both
environments takes the following form:

f =
(
Dgoal

)
∨xor

(
|mean(vl, vr)| (1−

√
|vl − vr |)(1− sir)

)
(57)

where vl and vr are left and right drive motor speeds, and sir is the
greatest current activation level of the IR sensors.Dgoal is ameasure
of proximity to the goal. Note that the two parts of the fitness
function are mutually exclusive; only one can apply at a time.
200 generations were performed in the simpler environments,
followed by 200 additional generations in the more complex
environment. Populations of 100 network-based controllers were
used in this work, and the authors compared recurrent and non-
recurrent neural network architectures in separate experiments.
The recurrent networks were able to achieve higher levels of
performance (they reached the goals more quickly), but the non-
recurrent networks were still able to learn (i.e. evolve) to perform
the task.
Environmental incremental evolution is also studied in [35].

The authors investigated a fairly complex object acquisition and
deposition task inwhich a simulated robot equippedwith a gripper
must find and pick up a peg in an arena and then deposit it outside
the border of the arena. A single fitness function was used while
the conditions of the environment were changed incrementally to
produce an increasingly difficult task. The fitness function used is
given by

F = tmax − tfinish (58)

where tmax is themaximumallowable timeper evaluation trial, and
tfinish is the time at which the task is completed. Note the function
F in (58) provides the final fitness evaluation for a given trial and is
not an integrand. Controllers were evolved in three stages, each
with an incrementally more difficult environment. These were:
(1) In the first stage, robots began each trial already holding the
object, so the task would be completed when the robot hadmoved
to the edge of the arena and dropped the object; (2) In the second
stage, robots began each trial with the object directly in front of
their grippers; (3) In the final stage, the robots began each trial at
a random position within the arena.
Note that F in (58) can be classified as an aggregate fitness

function and injects no a priori information into the evolved
solution. However, the selection of incrementally more difficult
training environments does restrict the evolved solution to a
degree, and the selection of these training environments required
knowledge of a feasible solution by the designers. The three
environments listed above were used for 100, 400, and 100
generations respectively, and the best evolved neural controllers
were able to perform the overall task when tested in the simulated
robot.

3.6. Competitive fitness evaluation

Competitive and co-competitive evolution in which the fitness
of one individual may directly affect the fitness evaluation of
another individual represents an important but relatively small
subset of the research surveyed in this paper. Several examples
of co-competitive evolution, in which two distinct populations
compete against each other asymmetrically (e.g. predator and prey
robots), have been reported in the literature (research listed in
Table 7).
The research presented in [10] co-evolved pursuit and evasion

behaviors in differently configured species of predator and prey
robots. The authors used competitive aggregate fitness selection
methods. The fitness functions for the competing robot species
were based on the time at which contact between predator and
prey occurred and can be summarized as follows:

Fprey =
t
tmax

(59)

Fpredator = 1−
t
tmax

(60)

where t is the time at which contact occurred and tmax is the
maximum length of time allowed for the evaluation trial periods.
These paired fitness functions are considered aggregate because
they involve only information pertaining to completion of the
task, and not information related to low-level behaviors. As is
often the case with aggregate fitness functions, Fprey and Fpredator
generate weak (but unbiased) fitness signals. To compensate for
this, fitness for the evolving individuals was averaged over several
complete sets of trials before selection occurred. Two populations
of 100 controllers each were evolved (one for the prey and one
for the predator) for 100 generations. The resulting populations of
controllers achieve an initial level of competence early in evolution
(after 25 generations), and then begin to cycle through reciprocal
levels of higher and lower performance. The authors show that this
performance cycling can be lessened to a degree by using hall-of-
fame selection rather than a simple greedy selection method.
Competitive evolution of neural network-based controllers was

investigated in [21] using EvBot robots equipped with color vision
systems. Teams of robots competed against each other to find
separate goal objects placed within a complex maze environment.
The work was described in terms of a competitive game in which
each robot team must try locate their opponent’s goal or home
marker object before the other team can locate theirs. During each
generation, a tournament of games was played between teams of
robots, in which the robots on one team would be controlled by
copies of one controller network from the evolving population and
the robots on the other team would be controlled by copies of
another network from the same population. If any single controller
in the populationwas able towin a game, then all controllers in the
entire population were evaluated using the following aggregate
fitness function:

F = 1.5wins− .5draws− 1losses (61)

wherewins is the number ofwins achieved by the controller during
a tournament, draws is the number of games played to a draw, and
losses is the number of games lost by the controller. If no single
controller within the entire population could win a game, then
fitness selection reverted to a tailored bootstrap selection mode
summarized by:

F = dmax − c1Bstuck − c2Bmotor (62)

where dmax is themaximumdistance traveled by the robot, Bstuck is
a Boolean that is true if all robots on a team become immobilized,
and Bmotor is a Boolean that is true if robots on a team generate
motor commands that exceed the capabilities of the drive motors.
Populations of 40 controllers were evolved for 450 generations.
The best evolved controllers were tested in real robots and shown
to be able to compete with hand-designed controllers created to
play the same competitive game.

3.7. Aggregate fitness functions

Unlike behavioral fitness functions, which measure only
aspects of a robot’s behavior during testing, and tailored fitness
functions, which may contain behavioral terms, aggregate fitness
functionsmeasure only task completion divorced from any specific
sensor-actuator behaviors. Aggregate fitness functions collect
(or aggregate) the benefit (or deficit) of all aspects of a robot
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controller’s expressed abilities into a single term. The fitness of an
evolving controller is calculated based only on whether or not it
completes the task it is being evolved to perform. If the task can
be completed in a well-defined way, the fitness function will use
only success/failure information. For example, if the task involves
competing in a win-lose game, the fitness function will include
a Boolean whose value depends only on whether the game was
won or lost in a particular trial period. If the task can be measured
by a final achieved quantity, then it will consist of a single scalar
term. For instance, in a foraging task, an aggregate fitness function
might simply count the number of objects correctly collected at the
end of a trial period. Research using aggregate fitness functions is
summarized in Table 8.
Using aggregate fitness functions, controllers have been

evolved for tasks including gait evolution in legged robots [64,32,
69,70], flying lift generation in a flying robot [66], and simpler lo-
comotion [16,65,67,68] and object pushing [17] tasks. The simpler
actuator coordination tasks are less environmentally situated and
produce less complex reactions to environmental stimuli. In some
cases, the robots do not have sensors at all. However, these works
are included here for their application of evolutionary computation
to design novel controllers.
In [17] the evolution of a ball-pushing behavior using a Sony

AIBO is described. The function measures the degree of success of
moving the ball simply by measuring the linear distance between
the ball’s starting and ending locations:

F = dball. (63)

Here, fitness for each individual was averaged over several
evaluation trials before propagation of the population to the next
generation took place. This reflects an attempt to boost the limited
fitness signal generated by this aggregate fitness function. In this
work, information fromvision and IR sensorswas fused to generate
virtual sensor information including angle to ball and apparent size
of ball. Populations of 60 neural network controllers were evolved
in simulation for 100 generations. The fittest controllers were then
demonstrated in a real robot.
In [64] the authors use embodied evolution to develop gaits for

a hexapod robot. The gait controllers were in the form of evolvable
state lookup tables. An aggregate fitness function was used that
measured the distance traveled by the robot while walking on a
treadmill:

F = d. (64)

The researchers reported evolution of functional gaits after 23
generations in a real robot using a controller population of size 30.
Both [16,65] describe separate examples of systems in which

whole robots (bodies and controllers) were co-evolved in simula-
tion and then constructed in the real world using modular actu-
ators and structural units. In both cases robots were evolved for
locomotion abilities and fitness was calculated simply as the dis-
tance d traveled. This was a completely aggregate fitness function
and contained no other features of potential control solutions or of
possible robot morphologies:

F = d. (65)

These two separate research efforts evolved agents capable of
locomotion, but without any sensors, and thus the evolved control
structures did not interact dynamically with their environments
to actively avoid obstacles or perform other tasks that might
be expected of an autonomous robot. However, both systems
produced functional designs that were used to construct real
robots that were tested and found to be able to move in the real
world.
[32] reported on the embodied evolution of a locomotion

behavior in which a robot (built from a LEGO Mindstorm kit and
relying on tactile sensors for object detection) must travel around
an environment containing a single circuit and small obstacles
placed along the walls. The controller architecture used here
was a simple mapping from sensor activation states to motor
states. Although not referred to as such in the paper, this was in
essence a simple neural network with linear excitation functions
and constant weights. The fitness function simply measured the
distance traveled by the robot (as reported by a swivel wheel and
odometer attached to the robot) over a given evaluation period:

F = darc_length (66)

where darc_length is the line integral (arc length) of the path traveled
by the robot, rather than the net displacement. This fitness function
can be considered aggregate if the task is considered to be simple
locomotion in an unknown environment. After 20 generations,
the best evolved controller was able to produce a continued
locomotion speed of 3.5 m/s without colliding with obstacles. This
compares to a slightly slower speed achieved by a hand-coded
controller designed to perform the same task.
In [66] embodied evolution is used to develop lift-generating

motions in a winged flying robot. A simple fitness function was
used thatmeasured height obtained by the robot at each time step:

f = h. (67)

A simple genetic programming-based controller representation
capable of expressing wing angles, positions and time durations
was used. A very small population of 4 individuals was evolved
with a tournament selection genetic algorithm. The robot did learn
to generate lift, but the robot was unable to generate sufficient
lift to completely loft the robot under its own power. Hence, the
evolution process was not entirely successful.
In [67] an indoor floating robotic blimp equipped with a

camera and placed in a small room with bar-code-like markings
on the walls was evolved to produce motion and wall avoidance.
Populations of neural network-based controllers were evolved. A
fitness functionwas used that averagedmagnitude of velocity over
each trial period:

f = v (68)

where v is the current velocity of the robotic blimp at each time
step. The function is considered aggregate when selecting for the
task of movement. The aspect of object avoidance is included only
implicitly. Using a population size of 60, successful controllers
were evolved in 20 generations with evaluations performed on the
physical robot.
[68] described the evolution of morphology and recurrent

neural network-based control for sensorless modular robots
constructed of LEGO and servo units. Robots were evolved for
locomotion abilities in simulation and then constructed in the lab
with real hardware. An aggregate fitness function (the same as
that used in [16,65]) was used that measured total net locomotion
distance d over the course of a trial period:

F = d. (69)

Note that an initial settling period occurred before each fitness-
measuring period began. This was done to avoid selecting for
robots that moved merely by falling and this makes the fitness
function technically tailored, to a small degree. Evolution of
functional locomotion abilities required on the order of 2000
generations. The best evolved robot and controllerwas constructed
and was reported to be able to move approximately 14 cm per
minute. In its virtual evolution environment, the simulated version
was able to move about twice this distance in the same number of
controller update cycles.
[69] presents another example of the embodied evolution of

gaits in a physical robot. The robot was a pneumatic hexapod of
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minimalist design. The authors used the same aggregate fitness
function as did [16,64,65,68]. Distance for the aggregate fitness
function was determined using images taken from an overhead
camera. The evolvable controller structure consisted of a set of gait
parameters within a control program looping structure.
Gait learning using a slightly different aggregate fitness

function is given in [70]. In this paper, a Sony AIBO quadruped
robot was used, and the evolutionary process was embodied in
the real robot. Evolved controllers took the form of a set of 12 gait
parameters. Fitness was measured as average speed achieved by
the robot:

F =
d
tmax

(70)

where tmax is the time length of a given evaluation trial. Note that
since tmax is constant, this function reduced to that used in [64,69].
The gaits evolved in [70]were reported to allow the robots to travel
20% faster than the best gaits resulting fromhand-tuned parameter
sets.

3.8. Research using simulated robots

In preceding sections of this survey we have concentrated on
work that involved real robots in one form or another. ER work
requires some level of physical verification. Research done with
agents in a purely simulated environment with no association to
any particular physical system is often classified as artificial life
research. Even so, there is a quite large body of work billed as
evolutionary robotics research that uses only simulated robots, or
animats [103,104]. Simulation plays a major role in evolutionary
robotics, and the case can be made that simulation-only work can
be as valid as work verified in real robots, if the simulations are
designed carefully. The work done in the 1990’s demonstrated
the validity of many simulated systems by directly verifying
results in real robots. At the same time artificial life research
and some work billed as evolutionary robotics continues to make
use of simulated sensors and actuators that incorporate global
environmental knowledge, sometimes in very subtle ways. The
great majority of the ER research reviewed above did involve real
robots, primarily in the verification phases. In only a very few cases,
simulation-only work was listed because it was involved with a
project that used real robots or because it was the only example of
work of its type.
In this subsection we briefly list some of the major simulation-

only ER research reports, starting with those that used behavioral
or tailored fitness functions.
[72] reports on a cellular encoding scheme for evolvable

modular neural networks for simulated legged robot control. An
example of a relatively complex task achieved in simulation using
a tailored fitness function is presented in [73]. The authors describe
the evolution of a coordinated movement task involving several
simulated robots. In [74] the authors studied the evolution of
simulated robot controllers for a task in which a robot must collide
with objects (‘‘collect’’ them) in one zone and avoid them in
another. Another example of evolving simulated robot controllers
to perform a (relatively) complex task is reported in [75]. There,
robot controllers evolve to produce lifetime learning in order to
predict the location of a goal object based on the position of a light
source. [76] presents experiments to evolve a group-robot flocking
behavior in simulated robots. A simulated two-robot coordination
task in which two robots evolve to move while maintaining
mutual proximity is reported in [77]. In addition, the research
in [78] evolved homogeneous controllers for a task in which four
simulated robots must move together in a small group toward
a light or sound source. In [79] groups of simulated robots (the
Swarm-bots) evolve group attachment and aggregation abilities as
well as group locomotion and inverted obstacle (hole) avoidance
abilities. These robots have since been built [80], and [110] reports
recent tests of the evolved controllers in the real robots. Other
examples of behavioral and tailored fitness functions used for the
evolution of behaviors in simulated robots are found in [81].
In [82] controllers created using incremental evolution in

simulation are studied. In [83] the authors study functional
and environmental incremental evolution and multi-objective
optimization in a simulated aerial vehicle. Further application of
multi-objective optimization applied in simulated evolutionary
robotics systems is found in [8] as well as an extensive
review of related work. [84,39] investigated the simulated co-
competitive evolution of competing populations in the form of
predator–prey behaviors. Finally, the co-evolution of controllers
and morphologies is studied in simulation in several works
including [85,51,38].

4. Discussion

The literature contains a large amount of experimental
repetition, at least in terms of tasks studied and fitness functions
used. Looking through the entire body of evolutionary robotics
work involving real robots, we find that there are only a handful of
distinct tasks forwhich controllers have been successfully evolved.
The most common among these are: (1) simple locomotion and
basic actuator control for locomotion [16,42,53,56,60,61,64–70];
(2) locomotion with object avoidance [48,13,11,26,27,15,32,43,46,
50,55,57,59,71,110]; (3) goal or position homing [12,34,58]; and
(4) goal homing with object avoidance [29,36,37,45,47,63]. These
tasks can be considered as a set of benchmark experiments for the
field of ER.
In someways, a set of de facto benchmark tasks does not benefit

the field of ER as much as would be the case in many other fields.
The emphasis in much of the current ER research is on evolving
more complex behaviors [14,20–22], and ultimately more general
behaviors.

4.1. Fitness assessment methods and novel task learning

In the larger field of evolutionary computing, honing of
methods and optimization of algorithms play a central role.
Many of the researchers who conduct experiments in the field
of ER, and whose work has been discussed in this survey, also
address issues of algorithm efficiency and evolutionary conditions
[5,29,43,55]. Reducing the time needed for evolution [5] and
minimizing controller size [43] are examples of particular aspects
of evolutionary system efficiency that have been addressed in
ER experiments. However, because ER is largely focused on
developing novel behaviors not seen in earlier work, and on
increasing the complexity of evolvable behaviors, efficiency issues
take a back seat to the more fundamental issue of fitness
assessment. It is necessary to use controller representations that
do not significantly restrict the controller search space and that do
not result in intractable evolutionary conditions, but beyond this,
efficiency is not the limiting factor in the current state of the art
of ER. The fitness function governs: (1) the functional properties of
the evolved controllers; (2) the point at which training plateaus
due to lack of fitness signal; and (3) the degree to which novel
behavior is learned. Robot controllers capable of performing new,
more complex, tasks are evolved when researchers devise new
fitness functions capable of selecting for the particular tasks of
interest. Current state of the art ER research employs fitness
functions that can select for relatively simple controllers capable
of performing tasks composed of no more than three or four
coordinated components. (Tasks investigated are summarized in
the introduction to this section.)
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One might then inquire as to which classes of fitness functions
are most effective at selecting for more complex behaviors.
Some work has been done comparing the effectiveness of
different fitness functions aimed at evolving controllers for the
same task. [52] investigated four different fitness functions
applied to a box pushing task and found that all of the fitness
functions produced reasonably competent controllers. In addition,
research in [21] compared environmental incremental evolution
to standard single-environment evolution and found no clear
advantage to either form of selection. Neither of these research
efforts produced truly statistically significant results that might be
generally applicable to a wider range of ER applications.
In general the relative fitnesses or qualities of the evolved

controllers in different research efforts are not known. Because of
this, results achieved in different research efforts using different
fitness functions are difficult to compare in absolute terms. Even
so, some comparison can be made. All else being equal, if two ER
platforms produce robot controllers capable of performing similar
tasks, with one platform using a complex hand-formulated fitness
function and the other using an aggregate fitness function, then
one can say that the platform using the aggregate fitness function
is extracting more information from the environment during
evolution. From this point of view aggregate fitness functions
generate a greater degree of novel environment-based learning.

4.2. Can aggregate selection generate complex behavior?

In the early 1990’s the first successful ER experiments generally
employed behavioral and tailored fitness functions. Since that
time, many varied forms of fitness functions have been applied by
different researchers to evolve controllers.
For each of the common tasks that have become benchmarks

in ER, there are examples of aggregate fitness functions or fitness
function contains relatively little a priori task solution knowledge
that have been applied to successfully evolve functional controllers
for real robots [16,65,32,68,63]. Themajority of suchwork has been
accomplished since the year 2000 and represents a shift informed
by experiment within the field of ER [107].
The existence of examples of aggregate selection being used to

drive the evolution of controllers for a variety of tasks indicates that
many of the arguments presented in justification of the various
more complex fitness functions are not in fact completely sound, at
least for these simple tasks. Some of the most complex behaviors
evolved did require very complex fitness functions [14,110], but
interestingly, several of these most complex evolved behaviors
were also evolved in other experiments using fitness functions
containing relatively little a priori task solution information
[20,35,21,22].
Aggregate selection bases selection only on success or failure

to complete the task for which controllers are being evolved.
The other forms of fitness functions currently used in ER require
designers to understand important features of the tasks for which
robots controllers are being evolved. In extreme cases, the fitness
function essentially defines an a priori known solution. If aggregate
selection could be achieved for much more complex tasks, it could
eventually lead to the application of ER methods to environments
and tasks in which humans lack sufficient knowledge to derive
adequate controllers.
In order to apply aggregate fitness selection methods, the

bootstrap problem, in which randomly initialized populations
have no detectable level of fitness, must be addressed. Sub-
minimally competent initial populations cannot be evolved using
only aggregate fitness functions. There are several methods
that might be used to overcome this difficulty and still allow
for the use of aggregate fitness selection. Some such methods
have been applied in research reviewed in this paper. These
include: (1) applying environmental incremental evolution in
conjunction with aggregate selection [35]; (2) using a bootstrap
mode that gives way to aggregate selection later in evolution; and
(3) applying competitive evolution so as to create an environment
that continually increases in difficulty due to the evolving skills
of other controllers in the population or agents in that same
environment [21].
Although it may be possible to overcome some of the problems

with simple aggregate selection, ER research still has not generated
controllers capable of performing truly complex tasks. The great
majority of tasks investigated in current and past ER research
are simple enough so that un-modified aggregate selection does
work. However, the generalization of current ERmethods to evolve
controllers capable of performing more difficult tasks may require
the development of new approaches to fitness evaluation.

4.3. Co-evolution of controller and morphology

In several evolutionary robotics papers, it has been suggested
that the simultaneous evolution of morphology and control
provides a pathway toward the development of complex robots
expressing complex behaviors, and this holds some promise.
However, the underlying argument that the co-evolution of body
and mind is the only way to generate a complex controller fitted
to a complex body is not entirely supported by the literature or
by observation. Humans are much better at designing physical
systems than they are at designing intelligent control systems:
complex powered machinery has been in existence for over
150 years, whereas it is safe to say that no truly intelligent
autonomous machine has ever been built by a human. There is
also genetic evidence from genome analysis that indicates natural
evolution of cognitive function is evolving more rapidly than
anatomical structure in modern humans [86]. This implies that
there may be a lag in the evolution of intelligence in humans
compared to physical development.
The co-evolution of bodies and minds does have potential

though, and several recent works have overcome previous
barriers by combining high-fidelity simulation environments with
modular elemental component libraries [16,65,68]. These newer
co-evolution works have used aggregate or very low bias selection
methods, and complex physical robots were fabricated and tested
in the real world.

4.4. The role of survival and fitness assessment in simulation

If fitness could be implemented simply as the ability to
propagate within a complex environment, it is possible that
systems with novel integrated behavioral intelligences could be
evolved. In order to achieve this, the fundamental element of
survival must be formulated in a way that is consistent with the
actual physical representation of the environment. Specifically,
robots should fail to survivewhen they physically stop functioning.
It is not currently feasible to perform embodied evolutions of
this type because many robots would be damaged and destroyed
during evolution. For example, a population of 50 robots evolved
for 100 generations with 50% failure during each generationwould
generate 2500 fatal robot failures. At the present time, the only
alternative is simulation.
The field of artificial life (AL) studies this concept of evolution

based on survival in simulated environments, but AL research
very often uses artificial measures of survival (essentially objective
functions), such as the ability to gather food or energy icons.
These measures of survival are not consistent with the underlying
representations of the simulated agents, or the simulated physics
of the environments.
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Simulations used in evolutionary robotics attempt to consis-
tently integrate all necessary physical elements of the robot’s en-
vironment. For example, in the peg collecting behavior evolved
in [14], the pegs were simulated as physical objects, fully inte-
grated into the object representation of the simulated environ-
ment. The fidelity of the simulationwas verified by testing evolved
controllers in the real world. Here, though, fitness was defined in
terms of success at collecting pegs, rather than physical survival
of the robots. In the competitive goal homing task studied in [21],
robots, obstacles and target objects were integrated into the sim-
ulation environment using representations that were consistent
with a physical environment. However, survival, enforced by the
fitness function, was couched in terms of robots physically arriving
at the goal locations in the environment, and not in terms of actual
physical survival of the robot. Although the experiments discussed
in [14,21] produced robots capable of performing their intended
tasks, neither of these research efforts produced robots capable of
physical survival in a complex environment per se.
In order for autonomous robot simulation environments to be

useful in studying real evolutionary processes, and in evolving true
survival abilities in robots above and beyond performing simple
well-defined tasks, they must include measures of survival that
are truly integrated into the fabric of the simulation environment,
while at the same time being consistent with real robotic systems.
Evolutionary robotics has not reached this stage of generality, and
this will be an important area of research. Survival in complex
environments is a fundamental goal in evolutionary robotics and
autonomous intelligent robotics as a whole.
In many ways the concept of fitness to perform a specific task

is at odds with fundamental survival in a complex environment.
If adaptation to environmental conditions is to be studied in
the general case, specific tasks should not be imposed upon the
evolving systems. Developmental robotics [108,109] addresses the
problem of environmental-based learning by attempting to endow
robotswith environmentally stimulated self-organizing abilities or
environmentally stimulated novelty-seeking. This eliminates the
need for an explicit objective function to drive the learning process,
but does not necessarily result in the learning of any one particular
behavior, beyond negotiating a particular environment.

4.5. The long-term prospects for evolving intelligence

Is it possible to automatically generate controllers for arbitrarily
difficult and complex tasks in the general case? The short answer
to this question is probably no. The tasks currently investigated
by evolutionary robotics are relatively simple compared to natural
systems and shed little light on the question of learning arbitrarily
difficult tasks. Even natural intelligent systems are limited in their
degree of sophistication, at least as represented by life forms
observed on Earth. To make matters worse, the overall abilities of
complex animals and humans are difficult to describe, much less
duplicate in a holistic way.
Let us put some bounds on this general question of using

artificial evolution to generating controllers for arbitrarily difficult
tasks: is it possible to use artificial evolution to generate intelligent
systems capable of solving large classes of tasks in the realm of
intelligent autonomous systems? The answer to this question is
unknown, but current evolutionary robotics results indicate that
it may be possible to generate autonomous systems with limited
general abilities at some point in the future.
Current ER research has demonstrated that competent au-

tonomous environmentally situated agents can be evolved. The
most complex evolved robot systems are capable of achieving
three or four interconnected abilities in a coordinated fashion that
allows an overall task to be completed. These results include the
multiple sequential goal homing task [22], the object collection and
deposition task [14], and the competitive team searching task [21],
all discussed in the survey section of this paper. These systems
were generated based on feedback from environmental interaction
and represent a step toward more general systems.

5. Conclusion

In this paper we have reviewed the use of fitness functions in
the field of evolutionary robotics. Many representativeworkswere
selected from the literature and the evolutionary processes used
were summarized in terms of the fitness functions. Functions were
reported using a standardized nomenclature to aid in comparison.
It was found that much of the research made use of fitness
functions that were selective for solutions that the researchers had
envisioned before the initiation of the evolutionary processes. The
degree to which features of evolved solutions reflected a priori
knowledge on the parts of the human researchers varied. A portion
of the reviewed research reported the evolution of controllers
which demonstrated novel abilities not specifically defined by the
fitness functions used during evolution. Recent work done in the
last few years has begun to use aggregate fitness selectionmethods
that introduce much less human knowledge and bias into the
evolved controllers.
The fundamental question of how to select for truly complex in-

telligent autonomous behaviors during evolution remains largely
unanswered and evolutionary robotics remains somewhat on the
fringes of autonomous robotics research. It should be pointed out
that other non-evolutionary computing-based attempts at produc-
ing robots capable of learning novel intelligent control have, in
general, stumbled up against the same problem of how to drive the
learning process without introducing an essentially a priori known
control strategy into the learned systems.
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