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Abstract--Evolutionary Robotics (ER) is a field of research that applies artificial evolution 

toward the automatic design and synthesis of intelligent robot controllers. The preceding decade 
saw numerous advances in Evolutionary Robotics hardware and software systems. However, the 
sophistication of resulting robot controllers has remained nearly static over this period of time. 
Here, we make the case that current methods of controller fitness evaluation are primary factors 
limiting the further development of ER. To address this, we define a form of fitness evaluation 
that relies on intra-population competition. In this research, complex neural networks were 
trained to control robots playing a competitive team game. To limit the amount of human bias or 
know-how injected into the evolving controllers, selection was based on whether controllers won 
or lost games. The robots relied on video sensing of their environment, and the neural networks 
required on the order of 150 inputs. This represents an order of magnitude increase in sensor 
complexity compared to other research in this field. Evolved controllers were tested extensively 
in real fully-autonomous robots and in simulation. Results and experiments are presented to 
characterize the training process and the acquisition of controller competency under different 
evolutionary conditions. 

 
Index Terms--Evolutionary robotics; evolutionary neural networks; swarm robotics; 

developmental robotics. 
 

I. INTRODUCTION 

Evolutionary robotics (ER) is an emerging area of research within the more general field of 
autonomous robot control. The primary goal of evolutionary robotics is to develop automatic 
methods for synthesizing intelligent autonomous mobile robot controllers. These methods should 
not require hand coding or in depth human knowledge of the particular control tasks for which 
the controllers are intended. 

Typically ER applies population-based artificial evolution to evolve autonomous robot 
controllers. The process of controller evolution consists of repeating cycles of controller fitness 
evaluation and selection that are roughly analogous to a generation in natural evolution. During 
each cycle, or generation, individual controllers taken from a larger population of controllers 
perform a task or engage in an evaluation period. This involves instantiating each controller into 
a robot (either real or simulated) and allowing the robot to interact with its environment (which 
may include other robots) for a period of time. Following this, each controller’s performance is 
evaluated based on a fitness selection function (objective function). In the final step of every 
cycle, a genetic algorithm (GA) is applied. The GA uses information generated by the fitness 
selection function to select and propagate the fittest individuals in the current population to the 
next generation population. During propagation, controllers are altered slightly using stochastic 
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genetic operators such as mutation and crossover to produce offspring that make up the next 
generation of controllers. Cycles are repeated for many generations to train populations of robot 
controllers to perform a given task. 

Possibly the most important unanswered question within the field of ER is whether the 
methods used so far to obtain simple proof-of-concept results can be generalized to produce 
more sophisticated autonomous robot control systems. In turn, a key issue related to the 
successful evolution of autonomous robot controllers is the specification of a fitness selection 
function.  

 
A. Research Goals 

The development of methods for general fitness selection during evolution of controllers is 
crucial to the future of ER. This view is reflected in some recent literature [13] and has been 
noted previously in [11]. As early as the mid 1960’s it was pointed out that creating a method of 
fitness selection capable of selecting for complex behavior was likely to be difficult [15]. 

One of the main goals of the research presented in this paper is to investigate the application 
of aggregate success/failure selection in combination with direct intra-population competition to 
evolve complex neural networks using numerous processed video sensor inputs to perform a 
non-trivial autonomous control task. In order to address the issue of initial populations having no 
detectable level of fitness, we also introduce the concept of multi-modal fitness selection. This is 
discussed in detail in Section V. 

In this work, populations of neural network-based robot controllers were evolved to play a 
robot version of the competitive team game Capture the Flag. In this game, there are two teams 
of mobile robots and two stationary goal objects. All robots on the first team and one of the goals 
are of one color (red). The other team members and their goal are another color (green). In the 
game, robots of each team must try to approach the other team’s goal object while protecting 
their own goal. The robot which first comes in contact with its opponent’s goal wins the game 
for its team. The game is played in maze worlds of varying configurations. 

The evolved controllers are tested in competitions of 240 games against hand-coded 
knowledge-based controllers. Results show that evolved controllers are competitive with the 
knowledge-based controllers and can win a modest majority of games in a large tournament in a 
challenging maze world configuration. This work extends research reported on in [38] by 
applying a new form of fitness selection, producing fitter controllers, and by extensive analysis 
of the behavior and competence of several populations of controllers evolved under different 
environmental conditions. 

Additional results are presented analyzing the course of evolution and the acquisition of 
behavior over the course of evolution.  

The paper is organized as follows: The remainder of the Introduction presents a review of 
related research, and a survey of common types of fitness selection functions used in 
evolutionary robotics. Section II presents the physical robot platform used in this research and 
discuses the video sensors used by the robots. Section III presents the evolutionary neural 
network architecture and section IV defines the selection criteria used to drive controller 
evolution. Sections V and VI present the results and testing of evolved game-playing robot 
controllers evolved under varying conditions. 
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B. Related work 

The field of ER has been reviewed in several publications [20,30,32,43]. Much the research 
reported on to date has investigated the evolution of controllers for simple tasks such as 
phototaxis [19,52], or object avoidance [11,26,36].  

Locomotion in combination with obstacle avoidance in legged robots has been the subject of 
several ER studies [10,18,21,23,26]. In [18] Gruau reports on a cellular encoding scheme for 
evolvable modular neural networks for legged robot control. Filliat et al. [10] were able to 
evolve efficient locomotion and object avoidance abilities in a hexapod robot using networks of 
threshold neurons and IR sensors to detect the robot’s environment. There, controllers were 
evolved in simulation and transferred to real robots for testing. Jakobi et al. [23] described the 
use of minimal simulation to evolve behaviors in an eight legged robot with sixteen actuator 
motors. In [26] Kodjabachian et al. describe the incremental evolution of walking, object 
avoidance and chemotaxis in a simulated six-legged insectoid robot. Finally, in [21] Hornby et 
al. describe the evolution of ball chasing using an 18-DOF quadruped robot. 

Peg pushing behaviors were evolved in [22,25]. In those works, the task required that two-
wheeled robots to push pegs (small cylinders) toward a light source. Earlier in [27] Lee et al. 
investigated a similar box-pushing behavior using Genetic Programming (GP).  

Competitive evolution in which the fitness of one individual may affect the fitness evaluation 
of another individual represents an important element of the research described in this paper. 
Several examples of competition in the form of co-competitive evolution have been reported in 
the literature. Cliff and Miller investigated the co-evolution of competing populations in the form 
of predator-pray behaviors [6,7]. Other similar works have been reported on in [4,12,20,42]. 
Direct competitive evolution of controllers within a single population is investigated in [37,38] 
and is further investigated in the research we report on in this article. 

Recently, several somewhat more complex tasks than those mentioned above have been 
reported. It should be noted that many of these tasks are only marginally more complicated than 
those achieved in the earliest days of ER. The evolution of robot controllers to perform these 
relatively complex tasks required using complex hand-formulated fitness functions [40,53]. 

The most difficult tasks addressed in the literature involve some form of sequential action. 
Nolfi reports on the evolution of a garbage collection behavior in which a robot must pick up 
pegs in an arena and deposit them outside the arena [40]. In [53] Ziemke studied the evolution of 
robot controllers for a task in which a robot must collide with objects (“collect” them) in one 
zone and avoid them in another. In [14] Floreano et al. report on the evolution of a robot 
behavior in which robots move to a light and then back to a home zone. Another example of 
evolving controllers for a more complex task is reported in Tuci et al. [51]. There, robot 
controllers evolve to produce life-time learning in order to predict the location of a goal object 
based on the position of a light source. 

Flocking or group movement behaviors have been also been investigated. Ashiru describes a 
simple robot flocking behavior in [1]. A two-robot coordination task in which two robots evolve 
to move while maintaining mutual proximity is reported by Quinn in [47]. Baldassarre et al. [2] 
evolved homogeneous controllers for a task in which 4 robots must move together in a small 
group toward a light or sound source. In [8] the physical aggregation of small robots into a lager 
structure is investigated and makes use of a relatively complex hand formulated fitness function. 

The main value of the largely proof-of-concept ER work done to date is that it has shown that 
evolvable controller structures (such as neural networks) can be trained to produce functional 
behaviors in autonomous robots (self regulating sensory/motor close loop systems). What has not 
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been shown is that ER methods can be extended to generate robot controllers capable of complex 
autonomous behaviors. In particular, no ER work to date has shown that it is possible to evolve 
complex controllers in the general case or for generalized tasks. Further, in almost every case of 
ER research presented in the literature, a hand formulated task specific fitness selection function 
is employed that more or less defines the how to achieve the target task.  

 
C. Selection Mechanism in Evolutionary Robotics: Measuring Fitness 

Although developing an experimental research platform capable of supporting the 
evolutionary training of autonomous robot controllers is a non-trivial task, we make the case that 
fitness selection is now the major hurdle confronting the further development of ER. Many of the 
initial concerns and criticisms of the field regarding embodiment and transference from 
simulated to real robots [21] have been addressed. There are sufficient examples of evolutionary 
robotics development platforms that have successfully demonstrated the generation of working 
controllers in real robots, and in addition, there have been numerous examples of successful 
evolution of controllers in simulation with transfer to real robots (refer to the previous review 
section for further examples.) However, concerns related to fitness evaluation and fitness 
selection remain largely unresolved. The most complex evolved behaviors to date include no 
more than three or four coordinated fundamental sub-behaviors [1,14,40,51]. In each of these 
cases, the fitness functions used to drive the evolutionary process were fairly complex, and 
relatively selective for an a priori known or pre-defined solution. 

Here, we review methods for controller fitness evaluation commonly used in evolutionary 
robotics. The fitness selection function (objective function) is at the heart of an evolutionary 
computing application. It is responsible for determining which solutions (controllers in the case 
of ER) within a population are better at solving the particular problem at hand. In work 
attempting to evolve autonomous robot controllers capable of performing complex tasks, the 
fitness function is almost always the limiting factor in achievable controller quality. This limit is 
usually manifested by a plateau in fitness evaluation in later generations, and indicates that the 
fitness selection function is no longer able to detect fitness differences between individuals in the 
evolving population.  

1) Tailored Fitness Functions: Tailored fitness functions are task specific hand-formulated 
fitness selection functions that generally include several sub-functions or terms combined in a 
weighted sum or product. These include terms that measure simple response behaviors, low-level 
sensor-actuator mapping functions, and any other factors that the human designer may choose in 
order to improve fitness selection for a particular behavior.  

For most complex autonomous robot behaviors, the optimal sensor-actuator mapping that will 
generate a given behavior is unknown. However, in very simple cases, these relationships might 
be known, or can be handcrafted by a human designer. For many of the proof-of-concept ER 
experiments reported in the literature, sensor-actuator mappings are directly selected for, and 
appear as terms in tailored fitness functions.  

Tailored fitness functions are almost always formulated by trial and error and/or based on the 
human designer’s expertise (and often a combination of both).  

The great majority of the ER research reported to date has used tailored fitness functions. 
Often such research has been aimed at evolving controllers to perform extremely simple tasks. 
These include phototaxis [19,52] and locomotion with object avoidance [11,26,29]. With 
difficulty, and with sufficient knowledge of the dynamics of a particular task or behavior, 
tailored fitness functions can be extended to evolve controllers for somewhat more difficult robot 
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tasks. For example, in [46] the authors describe the evolution of a coordinated movement task 
involving several robots.  

Additional examples of the formulation and implementation of tailored fitness functions are 
found in [9,23,45,48]. 

2) Incremental Fitness Functions: One difficulty arising in controller selection when applying 
evolutionary robotics toward a complex or difficult task is that early in the evolutionary process, 
controllers may have no detectably ability to perform the task at hand (the “Bootstrap Problem”). 
We refer to populations of such controllers as “sub-minimally competent”. Incremental fitness 
functions overcome the problem of sub-minimally competent initial populations by augmenting 
the difficulty of the task during evolution. This is a process of explicit training for simple sub-
behaviors followed by training for successively more complex behaviors. A main criticism of the 
use of incremental fitness functions is that they restrict the course of evolution to such a degree 
that resulting controllers cannot be considered to have evolved truly novel behaviors. They 
represent the optimization of hand-designed solutions. Even so, several of the most complex 
evolved robot behaviors reported on in the ER literature were developed using incremental 
fitness selection functions. In [17] the authors report on the evolution of a prey capture behavior 
using incremental evolution (i.e. evolution making use of an incremental fitness function). In that 
work, the researchers compared their incremental fitness selection to pure aggregate 
success/failure selection and reported that only the incremental approach was able to produce fit 
controllers. Further examples of the use of incremental fitness functions in ER include [25-27]. 

 One form of incremental evolution involves augmenting the difficulty of the environments in 
which the robots must operate while using a single aggregate success/failure fitness function. 
This is referred to as “environmental-incremental” evolution. This form of incremental evolution 
may not constrain the controllers search space to the degree that evolution must converge on a 
particular predefined solution. Very little work has been done using pure environmental-
incremental evolution. In [34], the authors use this type of selection to evolve controllers for a 
peg collection task similar to the garbage collection task in [53]. That research shows that 
environmental-incremental evolution using an aggregate success/failure selection function can 
produce controllers expressing complex behaviors. However, it is not clear to what degree the 
selection and augmentation of training environments shaped the final evolved controller 
population. Other examples include [33,45]. 

3) Aggregate Fitness Selection: Aggregate fitness functions select for high-level success or 
failure of the robot(s) to complete a given task or behavior. This type of selection reduces 
injection of human bias into the evolving system by aggregating the evaluation of benefit (or 
deficit) of all sub-behaviors into a single binary value. This is often called “all-in-one” 
evaluation. Aggregate fitness selection had been largely dismissed by the ER community 
because in many instances initial populations of controllers have no detectable level of overall 
competence (i.e. they are sub-minimally competent). Hence, pure aggregate selection produces 
no selective pressure at the beginning of evolution and the process cannot get started. Even so, 
aggregate fitness selection in one form or another appears to be the only method that can be 
applied to generate complex controllers in the general case without injecting restrictive levels of 
human or designer bias into the resulting evolved controllers. A rare example of aggregate 
fitness selection applied to the evolution of a complex task is found in [42].  

For truly complex behaviors, tailored fitness selection, and incremental fitness selection result 
mainly in the optimization of human-designed controller strategies and are not truly examples of 
the primary evolution or learning of intelligent behavior. At first glance, this appears to present a 
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rather bleak outlook for the future of ER. And in fact, as pointed out earlier, ER has progressed 
very little in the past decade.  

It is possible however to overcome some of the problems associated with aggregate selection. 
One such method involves utilizing intra-population competition to present a continually 
increasing task difficulty to an evolving population of controllers. This, in conjunction with a 
form of selection that relaxes a minimal initial human bias later in training is explored in this 
paper and is shown to result in competent controllers, at least for the task we investigate. 

4) Competitive and Co-competitive Fitness Selection: Competitive fitness selection utilizes 
direct competition between members of an evolving population. Robot controllers compete 
against one another within the same environment so that the behavior of one robot directly 
affects the fitness evaluation of another. This concept has received a limited but growing amount 
of attention within areas of evolutionary computation applied toward the automatic generation of 
intelligent systems. For example, in [5] neural networks were evolved to play computer checkers 
at the expert level using pure aggregate win/loss selection.  

Examples of co-competitive evolution involving populations of predator and prey robots exist 
in the literature [4,42]. As noted in those works, two co-evolving populations, if initialized 
simultaneously, stand a good chance of promoting the evolution of more complex behaviors in 
one another. As one population evolves greater skills, the other responds by evolving 
reciprocally more competent behaviors. The research presented in [4,42] shows this effect only 
to a modest degree, but results from other areas of evolutionary computing that suggest that 
given the correct evolutionary conditions, pure aggregate selection combined with intra-
population competition can result in the evolution of very competent systems [5,28].  
 

II. THE EVOLUTIONARY ROBOTICS PHYSICAL RESEARCH PLATFORM 

This research utilizes the EvBots, a recently developed, computationally powerful colony of 
small mobile robots [16,35].  
A. The Robots 

Each robot is 5 in. wide by 6.5 in. long by 6 in. high and is constructed on a treaded wheel 
base and use skid steering differential drive systems. Each robot is equipped with a PC/104 based 
onboard computer with x86 class processor. A custom RedHat Linux distribution is used as the 
operating system and is capable of supporting MATLAB in addition to other high-level software 
packages. The robots are linked to one another and to the Internet via a wireless network access 
point. Each robot also supports video data acquisition through a front mounted USB video 
camera. Fully assembled EvBots are shown in Fig. 1 (a), (b). Each robot is fully autonomous and 
capable of performing all computing control and data management on board.  

   
(a)                                            (b)                                           (c)                                                 

Fig. 1. A fully assembled EvBot (a), with colored shell (b), and the real maze environment with several EvBots (c). 
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A physical reconfigurable maze environment was constructed for the mobile robot colony 

(Fig. 1 panel (c)). To facilitate vision-based sensing, the maze was surrounded by a blue 
backdrop and robots were also fitted with colored skirts.  
 
B. The Vision System: Video range-finding emulation sensors 

All sensing of the environment by the robots was accomplished via video. The system used 
here (reported on in [35]) is a vision-base emulation of a scanning planar laser range finder.  

The vision system uses fixed geometric elements and color properties within the robot’s 
physical environment to calculate the ranges of colored “material types” such as walls, robots, 
and other objects. The black maze walls are of a constant height so distance can be calculated 
from a monocular image taken from cameras mounted on the robots at a fixed altitude. Robots 
are fitted with colored skirts of fixed width.  
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    (a)                                              (b)                                                (c) 

Fig. 2. Examples of image decomposition into vectors of range data to be fed into neural network controller inputs. One vector of 
length equal to the horizontal resolution in pixels of the image is produced for each ‘substance’ type in the physical robot 
environment. 

 
The system successively decomposing video images of fixed resolution. An image is 

segmented by color (and bisected horizontally to differentiate between robots and goals). It is 
then converted to a 2D numerical array where the index of each element is its xy-location in the 
original image and its value is an identifying integer depending on the pixel color.  

The vertical sum of pixels, Σp, of each material type is calculated and stored in a set of 5 
arrays spanning the horizontal spread of the image. These numerical arrays are then fed element 
by element through a simple distance formula to produce vectors of ranges d for each material or 
substance type: 
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=

p
HKd

                                     (1) 
 

Here, H is the physical height of each object type and K is an empirically derived constant.  
Fig. 2 shows several example robot-eye-view images and their successive decomposition into 

range data vectors.  
The final output of the vision system is a set of 5 concatenated range data vectors similar to 

what might be generated by a set of directional range finding sensors that were selective for each 
type of material. The resolution was set to 1 range value reading per material type per degree, 
spanning the forward facing field of view of the robot cameras. This generated a total of 150 
sensor input values represented by a vector of ordered real numbers. These were fed directly into 
the robot neural controllers without any bias or indication of origin, beyond consistent ordering. 
The large number of inputs provide the neural controllers with a high level of potential 
information about their environment. Other work in the field of ER has generally relied on the 
equivalent of 5 to 25 photo-detectors, IR sensors, single-input sonar or a combination of these 
[11,24,31]. 

Controller neural networks are only given the resulting numerical data vectors. All 
associations relating numerical values to physical distances, angles, and substances or objects 
must be learned by the neural networks during evolution.  

 
C. Simulated vs. Real Sensors 

The real vision system was closely coupled to a simulation environment in which the 
evolution of the neural controllers was performed [37].  

Fig. 3 (a) shows an image of the real maze environment with a graphical representation of real 
sensor readings superimposed on the image. Here, the sensor data were gathered by the robot in 
the center of the maze. In panel (b) of Fig. 3, the environment and object configuration is 
duplicated in simulation. Again, sensor data were taken from the center of the simulated maze 
and from the same orientation as the real robot in the real maze and superimposed onto the 
simulated maze graphic. Panels (c) to (f) of Fig. 3 show additional comparative pairs of 
simulated and real sensor data sets. Over a test set of 10 similar such configurations, the real 
vision based sensors produced an error of about 12.5 percent when compared to simulated sensor 
values. 
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(a)                                                 (b) 

 

 ( c )                                                 ( d )   
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the graphical representation, only nonzero weights are shown (as weighted lines). Neuron 
location is a function of connectivity. Note that the network shown in Fig. 4 is much smaller than 
the typical network evolved in this work and is included to illustrate network representation. 
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