
Robotics and Autonomous Systems 46 (2004) 135–150

Evolution of neural controllers for competitive game
playing with teams of mobile robots

A.L. Nelsona,∗, E. Granta, T.C. Hendersonb
a Department of Electrical and Computer Engineering, Center for Robotics and Intelligent Machines,

North Carolina State University, Raleigh, NC 27695-7911, USA
b School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Received 22 April 2003; received in revised form 1 November 2003; accepted 12 January 2004

Abstract

In this work, we describe the evolutionary training of artificial neural network controllers for competitive team game
playing behaviors by teams of real mobile robots. This research emphasized the development of methods to automate the
production of behavioral robot controllers. We seek methods that do not require a human designer to define specific intermediate
behaviors for a complex robot task. The work made use of a real mobile robot colony (EVolutionary roBOTs) and a closely
coupled computer-based simulated training environment. The acquisition of behavior in an evolutionary robotics system
was demonstrated using a robotic version of the gameCapture the Flag. In this game, played by two teams of competing
robots, each team tries to defend its own goal while trying to ‘attack’ another goal defended by the other team. Robot neural
controllers relied entirely on processed video data for sensing of their environment. Robot controllers were evolved in a
simulated environment using evolutionary training algorithms. In the evolutionary process, each generation consisted of a
competitive tournament of games played between the controllers in an evolving population. Robot controllers were selected
based on whether they won or lost games in the course of a tournament. Following a tournament, the neural controllers
were ranked competitively according to how many games they won and the population was propagated using a mutation and
replacement strategy. After several hundred generations, the best performing controllers were transferred to teams of real
mobile robots, where they exhibited behaviors similar to those seen in simulation including basic navigation, the ability to
distinguish between different types of objects, and goal tending behaviors.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Evolutionary robotics; Robot colonies; Mobile robots; Evolutionary neural computing; Behavioral robotics

1. Introduction

The fundamental goal of evolutionary robotics (ER)
is to apply evolutionary computing methods to au-

∗ Corresponding author. Present address: Computer Science and
Engineering, University of South Florida, 4202 E. Fowler Ave.
ENB 342, Tampa, FL 33620-5399, USA. Tel.:+1-813-546-4515;
fax: +1-813-974-5456.
E-mail address:aanelson@csee.usf.edu (A.L. Nelson).

tomate the production of complex behavioral robotic
controllers. The study of behavioral robotic controllers
that produce complex robot–environment interactions
has been an area of particular interest in recent years.
Many proof-of-concept experiments in the field of evo-
lutionary robotics have been carried out in the last
decade. Although much of this work was done using
computer-based simulations only[1–6], some work
has used real robots. Two examples are the evolution
of walking behaviors in hexapod and octopod robots

0921-8890/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2004.01.001

136 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

[7,8], and the evolution of simple behavioral con-
trollers for small mobile robots in closed environments
[9,10]. These include the development of phototaxis
behaviors[11,12]and of object avoidance and naviga-
tion [10,13] in small robots using differential steering.

The work described in this paper attempts to move
evolutionary robotics research beyond this nascent
stage. Experimental results are generated with a new
evolutionary robotics research testbed that includes a
colony of mobile robots, a coupled computer-based
simulation environment, and evolutionary neural net-
work controllers. The evolved neural controllers rely
on processed video images rather than sonar or IR
detectors. During evolution, controllers were selected
based on their relative abilities to compete against
each other in tournaments of robotic games. The
experiments presented in this work show that it is
possible to evolve moderately complex mobile robot
controllers in simulation using tournament selection
methods and to transfer these controllers to real robots.

The field of evolutionary robotics has been reviewed
in recent publications[13–17]. Several important is-
sues raised in this literature include: (1) the applica-
tion of ER methods to more sophisticated problems;
(2) methods of performance evaluation; (3) embodied
evolution in real robots versus evolution in simulation;
(4) the coupling of simulation to reality. In this work
we will focus on the first two issues.

1.1. Evolutionary versus knowledge-based
autonomous robot control: Why pursue ER?

There is a plethora of recent work in which particu-
lar elements of controller design have been automated
(automatic engineering). ER as a field is distinguished
from these methods in that the entire controller struc-
ture is developed using evolutionary methods. This is a
process of primary synthesis of a behavioral controller
rather than the optimization of an existing structure.

Many researchers in the field of ER have stated that
ER is a new and potentially powerful method of mo-
bile robot controller development. Although we agree
that ER has great potential, it must be pointed out that
ER has not as yet produced results that are competi-
tive with modern knowledge-based autonomous robot
controllers. In fact, we believe that ER research will
follow a long and an arduous path before the field sees
a significant amount of real world application. There

are several factors that make ER very potent in the
long term. These include: (1) the ability to automate
controller design; (2) the ability to produce controllers
for uncharacterized behavioral domains. Because of
the latter, it may be possible to use ER methods to
develop robot controllers for systems in which insuf-
ficient information exists to formulate a traditional
knowledge-based controller.

1.2. The future of evolutionary robotics: fitness
evaluation in evolving populations of robot controllers

One of the most important unanswered question
looming over the field of ER is that of whether the
methods used to obtain the simple proof-of-concept
results to date can be extended and generalized to pro-
duce more sophisticated robot behaviors. In turn, a
key issue related to the successful evolution of com-
plex behaviors is the specification of a training fitness
function or objective function.

One common method used to address the problem
of evolution of more complex behaviors is incremental
evolution. In incremental evolution, fitness functions
select for simple behaviors in the early stages of evolu-
tion and for more advanced behaviors as the evolution
proceeds[5,7,13]. The main criticism of incremental
evolution and related methods has been that they re-
quire the designer to decide which behaviors are ba-
sic to the final complex behavior sought. This limits
the potential for application to uncharacterized behav-
ioral domains. Direct evaluation by humans (some-
times termed ‘breeder selection’) has been used in
some ER work[13,19,20]. These methods limit the
automation aspect that is central to ER because they
require the constant attention of a human designer dur-
ing training.

Fitness function definitions must contain some
task-specific information from the designer, i.e., the
designer must state what the task is. However, for
complex behaviors, simply stating the task in a for-
malized way is not generally sufficient to select for
the ability to perform that task. Most fitness functions
used in current ER research contain information per-
taining both to the task outcome and how to perform
the task. In almost every case seen in the literature,
some form of hand designed task-specific absolute
fitness function is used to evaluate and select robot
controllers during the course of evolution. For very

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 137

simple behaviors, especially those involving only
one or a few sub-behaviors, stating the task becomes
equivalent to statinghow to accomplishthe task. This
is a subtle point but it has profound implications for
the long-term application of current ER methods.
This simple duality case has allowed researchers to
investigate proof-of-concept ER behavioral problems,
but has not provided for the viable extension of these
methods to more complex domains. The success of
most of the results reported in the ER literature relies
heavily on the simplicity of the tasks investigated.
In this work, the claim is made that specification of
training fitness functions in the simple case is dis-
similar to the specification of fitness functions for
the complex case to the degree that most current ER
results are not extensible to non-trivial problems.

1.3. Using competitive tournaments to evaluate the
relative fitnesses of robot controllers

The partial or complete automation of fitness func-
tion (metric) specification would profoundly change
the field of evolutionary robotics. In this work, we in-
vestigate a form of reinforcement learning that makes
use of competitive tournaments of games played by
individuals in a population of neural controllers.

Many games requiring high levels of skill can be
scored in a tournament using relatively simple and
deterministic metrics (measures). Such methods have
yielded impressive results in the evolution of Check-
ers playing neural networks[21] and of Go playing
neural networks[22] in the field of computer science.
In cases where at least one team or player of an evolv-
ing population achieves a win in a tournament, metric
complexity can be reduced further to best number of
games won in a tournament. The research described
in this paper applies competitive tournament selection
methods to the complex domain of behavioral robotics.

In the broader context of evolutionary computation,
various competitive and co-competitive evolution
strategies have been investigated[30,31]. However, at
the time of this research, very few instances of rel-
ative competitive fitness selection have been applied
to the generation of monolithic behavioral controllers
for physically embodied agents. In ER there are sev-
eral example of co-evolution of two controller species
[13,32,33]. These generally involve a predator popula-
tion co-evolving with a prey controller population. In

those cases, the controller selection is co-competitive
in that the fitness of predators may affect the fit-
ness evaluations of prey controllers and vise versa.
However, in those cases, the fitness metrics for the
individual species have been absolute rather than rel-
ative. ER differs significantly from other evolutionary
computing endeavors because the evolution is focused
on primary controller synthesis based on behavior.
In almost every case, mappings between the desired
behavior, and sensor input and actuator outputs are
unknown. Hence, training in ER cannot make use of
typical error metrics based on I/O training data sets.
Controllers must be evolved to mediate a complex
sensor–actuator–environment feedback loop based
only on features of expressed behavior. The appropri-
ate input–output mappings are not known, and in fact
could remain uncharacterized even after successful
evolution.

2. A competitive tournament based multi-robot
evolutionary robotics research environment

This section describes the evolutionary robotics
research platform used in this research. The main
components of this testbed are: (1) an evolutionary
artificial neural network application, (2) a colony of
physical autonomous mobile robots and environment,
(3) a vision-based range-finding sensor emulation sys-
tem, (4) a simulation and evolutionary training envi-
ronment. We will focus in detail on the neural network
and genetic algorithm formulations. The hardware and
the vision-based sensor systems have been described
in [23] and will be only briefly described here.

2.1. The evolutionary neural network architecture

Neural networks are by far the most commonly
used controller structures in ER. This is mainly due
to their flexibility and their close association with the
research field of evolutionary computing. In the early
days of ER research, initial work was done using a
variety of evolvable controller architectures. These in-
clude evolvable state transition structures, evolvable
hardware[13], and genetic programming[29]. Genetic
programming is still used in a small proportion of ER
research[18]. However, even though neural networks
have come to dominate the field of ER, little if any

138 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

work has been done exploring the relative suitability
of different architectures. We use neural networks in
this work because they afford a real-valued variable
dimension search space that is well suited to stochas-
tic search methods.

Because the dynamics of behavioral robotics tasks
are not well characterized, we believe it is important
to allow a neuro-evolution process to use a very broad
network morphology search space. Much of the ER
work to date used very simple network topologies
and restricted weight values[10,12,24,25]. Such re-
strictions limit the scalability of the methods studied.
Other researchers have used more complex networks
[8,13,26]and we pursue this path. We have developed
a generalized neural network architecture capable of
implementing a very broad class of network structures.
Networks are not limited to any particular layered
structure and may contain feed forward and feedback
connections between any of the neurons in the net-
work. Networks may contain mixed types of neurons,
and a variable integer time delay may be set on the
inputs of any neuron in the network. Internal neuron
activation function types include sigmoidal, linear,
step-threshold, and Gaussian radial basis functions.

The connectivity and weighting relationships in
a given network are completely specified by a sin-
gle two-dimensional matrixW of scalar weighting
values. Information specifying neuron types is given
in a vector structureN with one formatted field per
neuron. Current and past network inputs and neuron
functional levels (outputs) are stored in an ordered
matrix, I. Each row ofI contains the inputs and acti-
vations associated with a particular time delay starting
with the current time and progressing into the past
with successive rows. The maximum level of time
delay supported by a network is specified by a scalar
integer, δ. This formulation allows for the efficient
implementation of a variety of evolutionary training
methods and for the formulaic specification of a very
broad class of network topologies. Also, the formula-
tion supports efficient addition or removal of neurons
and connections without disruption of the network’s
overall connectivity relationships.

Neuron activation functions take the form

fn(u) = fn(wn, i(t, τ(n))), (1)

wheren ∈ {1, . . . , N}, wn is thenth row of the weight
matrixW, i(t, τ(n)) theτth row of the input/activation

matrix I at time t, andfn the activation function type
specified in thenth field ofN. The integer valued time
delay,τ(n) is also defined in thenth field of N and is
written as a function ofn. In most cases, the argument
of the neuron activation function,u, takes the form of
the weighted sum (dot product) of the inputs and the
associated weights

u =
N+1∑
m=1

wmim, (2)

whereN + 1 is the width ofW and ofI. These acti-
vation function types include sigmoid, linear and step
functions. Note that bias inputs are accounted for the
addition of a column of inputs inI that are always
1, and by an additional column inW of associated
weights. For the radial basis activation functions,u is
the Euclidean distance betweenw andi in n-space.

Network inputs are considered to be linear neurons
with all zero connecting weights except for a single
self-connection with a unit weight. There is no distinc-
tion between hidden and output neurons except that
outputs are specified as such and their function out-
puts can be selected and read from the matrixI after a
network updating cycle. The input–output relation for
a given network can then be specified as follows by

I(t + 1) = Network(I(t),N,W), (3)

and

o ⊂ i(t + 1,1), (4)

whereo is a vector of values from specified output
neurons and is a subset ofi(t + 1,1), the first row of
the newI(t + 1).

Fig. 1shows the graphical representation of several
members of a population of heterogeneous networks.

2.2. The EvBot platform and environment

Our laboratory has recently developed a new, com-
putationally powerful colony of small mobile robots
named EVolutionary roBOTs (EvBots). Each robot in
the colony is fully autonomous and capable of per-
forming all control computing and data management
on board. The robots use a PC-104 X86 compati-
ble 133 MHz computer architecture and run a custom
distribution of the Linux operating system. The full

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 139

Fig. 1. Several example networks from a heterogeneous population of neural networks initialized for an evolutionary training.

hardware and computer architecture of these robots is
described in[23,27].

A physical reconfigurable maze environment was
constructed for the mobile robot colony. Robots and
other objects in the environment were fitted with col-
ored skirts to facilitate color vision sensing of the en-
vironment. A fully assembled EvBot and the physical
environment are shown inFig. 2.

Fig. 2. Photographs of a fully assembled EvBot (a) and the physical robot maze environment containing several robots (b).

2.3. Video range-finding emulation sensors

Each robot is fitted with a small video camera. Im-
ages captured from the video cameras are processed
into range data before being feed into the neural con-
trollers.

The vision systems on the robots use fixed geomet-
ric properties within the physical maze environment to

140 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

calculate the ranges and angles of walls and objects.
This is done by identifying the pixel colors and regions
and then calculating the vertical sum of pixels in the
regions. For an object of known fixed size, a simple
formula can be used to calculate the distance of the
object that produced the colored region in the original
video image based on the calculated pixel sum. The
vision system can detect five object (material) types.
These are walls, red robots, green robots, red goal ob-
jects and green goal objects. For each detectable ob-
ject type, range and angle values are reported over
a spread of 48◦ centered on the forward direction of
the robot body frame of reference. A vector of range
values is produced for each object type. Angular data
is implicitly encoded in the sequential left-to-right
order of range values reported in each range data
vector.

It should be noted that object type information is
not explicitly given to the robot neural controllers.
Controllers are only given the resulting numerical
data vectors. All associations relating distances, an-
gles, and object types must be learned by the neural
networks.

2.4. The coupled simulation environment

Evolution of the neural controllers is performed
in a simulated environment coupled to the real
robot–environment. Robot agents, sensors, and robot–
environment and robot–robot interactions are mod-
eled. Evolved controllers can be transferred directly
to the real robots without alteration of the controller
portion of the code.

Fig. 3. Graphical representations of the simulation environment. In (a) robots are shown clustered around their respective goal objects. Panel
(b) shows a graphical representation of simulated range sensor data received by the robot agent in the lower left corner of the environment.

Fig. 3 shows the two views of the simulation envi-
ronment. InFig. 3of panel (a) the black lines represent
walls, the smaller circles represent the robots, and the
larger circles represent the stationary goals. Panel (b)
shows a graphical representation of simulated range
sensor data received by the robot agent in the lower
left corner of the environment.

3. The competitive tournament evolutionary
algorithm

In this section we present the details of the ge-
netic algorithm and training fitness functions used to
evolve the game playing controllers discussed in this
research.

3.1. Performance function specification in
evolutionary robotics

In ER, fitness for selection is most often mea-
sured using hand-formulated parametized absolute
real-valued functions to be maximized during train-
ing. It is arguable that for many complex behaviors,
the knowledge required to specify an adequate ab-
solute training fitness function is equivalent to that
would be required to design a rule/knowledge-based
controller to perform these same behaviors.

Tournament ranking evaluation partially eliminates
the need to specify a fully domain-specific fitness
function. As long as the problem can be formulated
into a game that is either won or lost, other details
about the game need not be included in the fitness

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 141

function definition. Agents in an evolving population
that receive higher relative competitive rankings in a
tournament of games will be propagated preferentially
over agents receiving lower rankings.

Below, a general formulation of the tournament
competitive fitness selection function used in this
work is given. This fitness function is designed to
be useful for team games that can be formulated to
produce a win–lose outcome. These would include
games like soccer and robot tag. Many useful real
world behaviors such as mine sweeping and group
searching behaviors in unknown terrain can be also
formulated into scorable team games.

The training fitness function can be reduced to two
overall parts: (1) select for controllers that win more
competitive games, (2) identify and select against
pathological controller morphologies. This function
generates an intra-population competitive ranking
similar to that used in the evolutionary neural com-
puting work in [21] rather than the more common
co-competitive absolute fitness rankings used in[33].
This was done to take advantage of competition to
drive a single population toward continual improve-
ment.

Each generation in the evolutionary process con-
sisted of a tournament of games played between the
robot teams using neural controllers in the evolving
population. Robot controller selection was based on
whether controllers won or lost games in the course
of a tournament. Controllers that won more games
were deemed to be fitter. Following a tournament, the
fittest neural controllers were selected. Mutated ver-
sions (offspring) of these fittest controllers then re-
placed the least fit members of the population to make
the next generation’s population.

Because we wanted to rely on tournament selec-
tion as much as possible, only pathological cases
that were known to lead to early and catastrophic
stagnation of the evolutionary process were actively
selected against. The fitness function selected against
two pathological controller behaviors. The first be-
havior was the production of constant reverse wheel
speeds in one or both wheels throughout the course
of a game. The second pathological behavior was
that of becoming stuck and remaining stuck for
the duration of a game. For purposes of formaliza-
tion, we will indicate these two cases as Boolean
functions.

A populationP of evolving robot controllers con-
sists of a fixed numberP of neural networks. At
each generation, a tournament of competitive games
is played to evaluate each controller’s relative fitness
within the population. At the beginning of a tour-
nament, a set of game starting positions for robot
teams and goals is quasi-randomly generated. These
beginning positions are then used for every game in
that tournament. Each controller in the populationP
plays against every other controller inP (complete
tournament). For every pair of controllers in the pop-
ulation, two games are played. In the first game the
first controller is used in the first team of robots and
the second in the second team of robots. In the second
game, the controllers are switched. The scoring of the
controller population members makes use of the rela-
tive scores of each such pair of games. This eliminates
any advantage one team of robots may have incurred
due to the environment and to initial conditions.

A generalized form of the tournament performance
evaluation function can be written as

F(p) = w + d + n, (5)

wherew, d and n are the functions evaluating the
contributions of games won, games played to a draw
and expression of pathological behavior respectively
during a tournament.F(p) gives the fitness of thepth
controller of the populationP.

The relative fitness of the robot controllers playing
in one game is dependent on the outcome of a recipro-
cal paired game in which the starting positions of the
controllers are reversed. We will denote these paired
games asg andg′. Using these paired games we break
the game wins into three classes. In class 1, a partic-
ular controller wins both gamesg and g′. Games of
class 2 are those in which one controller wins one of
the games but plays the other to a draw. In class 3,
one controller wins one game but loses the other.

The points awarded to thepth controller for num-
ber of wins in the tournament (thew sub-function of
Eq. (5)) can be broken down as follows:

w = aG1 + bG2 + cG3, (6)

whereG1, G2, andG3 denote numbers of games won
of each of the three classes anda, b, and c are the
scalar weighting factors. The values ofa, b, andc are
generally set so that

a > b > c > 0,

142 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

since a controller that can win from both of the starting
positions ofg andg′ is better than one that can only
win one of the two games.

Points are also awarded to a particular controller
depending on the number paired of games played to a
‘better’ draw. These are defined as games one of the
teams is closer to winning the game in both of the
gamesg andg′. Thed sub-function ofEq. (5)becomes

d = δD1, (7)

whereD1 denotes number of games played to a better
draw andδ is a scalar weighting factor.δ is set to
be much less thana, b, or c so that results related to
numbers of wins dominate the tournament selection
process. The sub-functiond from F(p) in Eq. (5) is
included because it is possible to have tournaments
with very few wins, especially early in training.

The n sub-function of Eq. (5) selecting against
pathological behaviors can be expanded as

n = αB1 + βB2, (8)

whereB1 andB2 are the Boolean functions denoting
the presence (1) or lack (0) of expression of each of
the pathological behaviors in the current tournament
(these were defined above as continual backward mo-
tion and becoming stuck, respectively).α andβ are
the scalar weighting factors. The values ofα and β
are generally set to be large negative values in relation
to a, b, andc so there is a heavy selective pressure
against these behaviors even if they result in wins.

3.2. Neural network genetic representation and
mutation

As noted in the section describing the neural net-
work, all connectivity and weighting information re-
quired to specify a particular network is stored in a
matrix of real numbers and a vector structure of neu-
ron properties. These two objects are acted upon by
the genetic algorithm directly and can be thought of as
the genetic material of a network. There is no encod-
ing (such as a binary encoding), direct or otherwise
beyond this level. The genomeC is then specified by
the two-dimensional matrix or real numbers

C = [W : N′], (9)

whereW is the weight/connection matrix, andN′ is a
two column matrix extracted from the formatted struc-

ture N specifying the type and associated time delay
of each neuron (two integers for each neuron).

During evolution, networks are mutated in three
ways. First, the non-zero real-valued elements in the
weight matrix can be perturbed. Second, connections
can be added or removed by changing zero elements
to non-zero values and vice versa. Finally, neuron
units can be added or removed by inserting or deleting
paired rows and columns ofC.

Mutation of a network selected for inclusion in the
next generation population can be formalized by the
compound relation

C′ = Ms(Mc(Mw(C))), (10)

whereC is the chromosome of the parent network and
C′ the resulting mutated offspring network chromo-
some.Mw, Mc, andMs are the genetic operators that
mutate the weights, the connections, and the neuron
structure of the network, respectively. Any or all of
the different types of mutation can occur during prop-
agation. Each of the three mutation operators takes a
chromosome as an input and produces an altered chro-
mosome as output. Their general form is

M(C) =
{

mutate(C) if R < m rate

C if R ≥ m rate

}
, (11)

where mutate(·) is a function that performs the ap-
propriate alteration onC, R is a number from a uni-
form random distribution between 0 and 1, andm rate
is the probability threshold associated with that type
of mutation.R is updated with a new random value
each time a mutation operation is performed. Muta-
tion is the only genetic operator used. Crossover was
not employed. There has been some work that indi-
cated that crossover is not beneficial for evolutionary
neural computing applications.

In this research, the probabilities for invocation for
the genetic operatorsMw, Mc, andMs were set to 0.9,
0.5, and 0.5 per generation, respectively. In the case
that the mutation operator was invoked, the mutation
rate was initialized to 0.1 (10% of the weights in the
network on average would be randomly selected and
mutated). The mutation magnitude was initialized to 2
(mutated weights would be perturbed random values
between−2 and 2). New connection weights associ-
ated with newly inserted neurons or connections were
initialized to values between−0.5 and 0.5.

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 143

3.3. The evolutionary training algorithm

Populations of fixed sizeP were evolved using an
evaluation, mutation, and replacement scheme. After
a tournament of games (one generation), controller
population membersp were scored relative to each
other using the performance metricF(p) defined in
Eq. (5) of Section 3.1. The populationP is always
ordered from fittest to least fit before propagation to
the next generation.

The next generation populationP next is con-
structed from the union of the following three sets
derived from the current (parent) population:

P next= {p1 · · ·pm} ∪ {p′
1 · · ·p′

m} ∪
× {pm+1 · · ·pP−2m}, (12)

wherepm ∈ P is the mth individual of the current
(parent) populationP, p′

m is a mutated version of
pm, andP is the fixed population size. The result of
Eq. (12) is that m of the fittest controllers are trans-
ferred un-changed to the next generation. This same
fraction of the controller population is mutated to pro-
duce offspring usingEq. (10)and added to the next
generation. The remainder of the next generation pop-
ulation is made up of the fittest remaining members of
the current population. Values formandP are selected
by the user and reflect a trade-off between evolution-
ary speed and chaos during training. For example, an
m/P = 1/3 ratio gives a replacement rate of 33.3%.
The evolutionary algorithm described inEq. (12)is a
form of greedy mutation-only(µ + λ) − ES with in-
complete replacement[28].

Although this algorithm is technically a greedy one,
the game environment initialization for each tourna-
ment affects the outcome of the games to such a de-
gree that the fittest member of the population could
be eliminated. This adds a high degree of probabilistic
selection to the algorithm.

4. Results

In this section, we present initial results and tests
of one population of robot controllers evolved to play
robot Capture the Flag. In this game, there are two
teams of robots and two goal objects. All robots on
team #1 and one of the goal objects are of one color

(red). The other team members and their goal object
are of another color (green). In the game, robots of
one team must try to come within a certain distance
of the other team’s goal object while protecting their
own. The robot which first comes within one robot
body diameter’s distance of an opponent’s goal wins
the game for its team. The best evolved controllers
were able to play and win competitive games both in
the simulated environment and in the physical envi-
ronment using the real robots.

4.1. Experimental setup

We will focus on an evolved controller that dis-
plays two identifiable sub-behaviors: wall avoidance
and selective avoidance of one’s own goal. The con-
troller was evolved in a population of sizeP = 6 for
366 generations. The population replacement rate was
set to 50% per generation. Several populations were
evolved with these parameter settings and found by
subjective observation to be able to perform competi-
tively. However, due to the high level of computation
and physical setup time involved, the experiments
detailed below were only conducted on one of the
evolved populations.

The parameters relating to the performance metric
F(p) of Eq. (5)used in this training evolution are given
in Table 1. The resulting overall tournament score for
a particular controller is the sum of all points awarded
for each game during the tournament as discussed in
Section 3.1. Although a range of parameter settings
were tested, insufficient data exists to perform a statis-
tical sensitivity analysis on the parameter settings. In
fact, a common feature of many genetic search spaces
that they are computationally intractable with respect
to a direct search and individual searches (evolutions)
are too time consuming to allow for the statistically
optimization of search parameters.

Table 1
Fitness function parameter settings used during evolution

Parameter Game case description Value (points awarded)

a Win–win 20
b Win–draw 15
c Win–lose 10
δ Best draw 2
α Backward motion −10
β Stuck −2

144 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

In all cases, robot games played with the real robots
in their physical maze environment were recorded by
collecting a sequence of video images from a cam-
era mounted directly above the maze. These video se-
quences were then processed to extract the movements
of the robots during the course of the game(s).

4.2. Behavior of evolved robot controllers in
simulation and in reality

In order to demonstrate the functionality of the
evolved robot controllers, sets of games were played
both in simulation and then using real robots in the
real maze environment. Using the fittest evolved neu-
ral controller from the population, two sets of games
were played: one set in simulation, and the other in
the real environment using real robots. Each team
consisted of two robots.

Sets of initial game positions were automatically
generated based on the first nine random seed states

Fig. 4. Nine simulated games played with robot agents using the single best evolved controller from a population. Team 1 robot paths and
goal object are indicated by a dark line and circle, while team 2 paths are indicated by light lines.

of the MATLAB random number generator. These ini-
tial positions were used in the simulated games and
then this same set of nine initial positions was used in
the games played with the real robots in their physical
maze environment. The maze environment was config-
ured similarly in both the simulated and real worlds. A
game was allowed to continue for 80 time steps before
being terminated. Games in which all robot agents on
both teams became stuck were also halted. In these
cases, the game was given to the team that was clos-
est to its opponent’s goal at the termination of the
game.

Fig. 4 shows the results of nine consecutive simu-
lated games where each robot agent was controlled by
the fittest member of the evolved population of con-
trollers. The final positions of the robots are shown,
and the path taken by each robot is indicated by a
curve. The darker lines indicate the paths followed by
the team 1 (red) robots while the lighter lines indi-
cate the paths followed by the team 2 (green) robots.

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 145

Fig. 5. Nine games played with real robots in the physical environment. The initial conditions of the games match those of the
simulated games. Team 1 robot paths and goal object are indicated by a dark line and circle, while team 2 paths are indicated by light
lines.

The larger circles represent the stationary goals (flag).
Robots start each game close to their own goal.

Fig. 5 shows the results of the nine consecutive
games when played with real robots in the physical
environment. The initial positions of the robots and
goals of the physical games corresponded to those used
in the simulated games. The same best performing
evolved neural controller as was used in the simulated
game set (from the particular evolved controller popu-
lation) was transferred to each of the real robots. These
robots are fully autonomous: all sensor data, image
processing, and neural net computing is done onboard
each of the robots. The data were generated by col-
lecting sequences of images using a camera mounted
over the physical environment. The image sequences
were processed to extract each robot path. The paths
were then superimposed on the final image of each
game to produce a graphic similar to that presented
for the simulated games.

The results of the simulated and real game sets are
presented in tabular form inTables 2 and 3.

Even though the outcome of a game played in sim-
ulation is likely to have the same outcome in reality
(88.8% similarity), it is clear from the data presented
in Figs. 5 and 6that the exact behavior and particular

Table 2
Simulated game results for each of the random game initializations

Game
initial state

Game duration
(time steps)

Winner

1 59 Team 1 (red)
2 25 Team 1 (red)
3 21 Team 1 (red)
4 7 Team 2 (green)
5 21 Team 1 (red)
6 33 Team 2 (green)
7 9 Team 1 (red)
8 33 Team 1 (red)
9 14 Team 2 (green)

146 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

Table 3
Real robot team game results for each of the random game ini-
tializations

Game
initial state

Game duration
(time steps)

Winner

1 80 Team 1 (red)
2 80 Team 1 (red)
3 12 Team 1 (red)
4 10 Team 2 (green)
5 45 Team 1 (red)
6 11 Team 1 (red)
7 8 Team 1 (red)
8 48 Team 1 (red)
9 70 Team 2 (green)

paths followed by robots in simulation generally de-
viate from those obtained in the real world. This may
reflect the possible unequal transference of subtle
abilities with regard to robot performance. However,
the same basic evolved abilities are observed in sim-
ulated and real games. Comparison of the exact paths
followed in simulation and in reality is not consid-
ered to be the best metric of transference quality.
The reactions of the trained neural controllers are
highly non-linear. Deviations resulting from slight
variations in starting positions or sensor inputs com-
pound with each time step so that even a small dif-
ference will result in divergence in a relatively short
time.

Fig. 6. Example games played between trained neural network controllers (lighter dotted lines) and rule-based controllers (dark dotted
lines). In (a) good rule-based robots beat neural network controllers while in (b) neural controllers eventually beat random controllers
starting from similar initial conditions.

4.3. Measuring the performance of evolved
controllers

In this section we will present experiments aimed
at measuring both the quality and the character of the
evolved controller used in the previous section’s ex-
periments.

The evolved neural controller was tested in a set
of real robot games against hand coded rule set
knowledge-based controllers designed to play robot
Capture the Flag.

Two knowledge-based controllers were developed.
The first was designed to be a difficult opponent to beat
and made use of both temporal and spatial information
to avoid walls, extract itself from corners, avoid team
mates, block opponents and home in the opponent’s
goal. In addition, this controller could determine if it
was stuck on an object outside its sensor field of view
and extract itself. The second controller was designed
to be a poor player and produced random wheel speed
commands at each time step that have no relationship
to its sensor inputs. This poor-performing controller
was included in these tests to provide a minimum
performance baseline reference. In the absence of any
viable competition, a controller producing random
speed commands may eventually happen upon their
opponent’s goal (flag) by chance. It is important to
show that the evolved controllers perform better than

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 147

Table 4
Results of the set of 10 games played between the evolved neural network controller and the hand coded rule-based (good) controller

Game Random
initialization

Team 1 Team 2 Winner Time steps

1 1 Neural Good rule Neural 14
2 1 Good rule Neural Good rule 20
3 2 Neural Good rule Neural 16
4 2 Good rule Neural Good rule 39
5 3 Neural Good rule Good rule 36
6 3 Good rule Neural Good rule 28
7 4 Neural Good rule Good rule 114
8 4 Good rule Neural Neural 31
9 5 Neural Good rule Good rule 13

10 5 Good rule Neural Good rule 27

random chance. These test reference controllers will
be referred to as the ‘good rule-base’ and ‘random’
controllers, respectively. In both cases, sensor inputs
and motor output ranges were restricted to those
allowed in the evolved neural network controllers.

The evolved neural controller competed in a series
of real games against both the good rule-base and the
random controllers. This was done to rank the quality
of the evolved controller on a continuum including a
good controller and a very poor controller.

Ten games were played between the evolved neu-
ral network and the good rule-based controller. Game
initial positions may give one or the other of the com-
peting teams an advantage. For this reason, a com-
parative set of games must contain two games for
each starting configuration used. In the first, each team
is in a particular initial position, and in the second,
the two team’s starting positions are swapped. For
these games, five initial game positions were gener-

Table 5
Results of the set of 10 games played between the evolved neural network controller and the hand coded random (poor) controller

Game Random
initialization

Team 1 Team 2 Winner Time steps

11 1 Neural Random Neural 16
12 1 Random Neural Neural 67
13 2 Neural Random Neural 17
14 2 Random Neural None Incomplete
15 3 Neural Random Neural 81
16 3 Random Neural Neural 38
17 4 Neural Random Neural 26
18 4 Random Neural Neural 30
19 5 Neural Random None Incomplete
20 5 Random Neural Neural 18

ated. Since two games are played for each staring po-
sition, the total is 10 games.

A similar set of 10 real games was played between
the evolved neural network and the random (poor)
controller. Again, the same set of five game initializa-
tions was used to conduct a set of 10 paired reciprocal
games.

Tables 4 and 5give the results of the games in-
volving the good rule-base and the random controller,
respectively.

Summarizing these results, we find that the neural
network controllers won 3 out of 10 games against
the good rule-based controller, or 30%. On the other
hand the good rule-base won 7 out of 10 or 70% of its
games. All of the games between the neural network
and the rule-based controller were played to comple-
tion. The neural network controllers won 8 out of 10
against the random controller, or 80%. The random
controller was not able to win any games. In this case

148 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

two of the games were not completed because all the
robots became stuck before the end of the game.

Fig. 6 shows the two example game results from
the above tables; these are games 2 and 12. The robots
are shown in their final end-game positions. The dot-
ted lines indicate the courses of the robots during
each game. In the first game (Fig. 6(a)), neural net-
work controllers (green, lighter dotted lines) compete
against good rule-based controllers (red, dark dotted
lines). In the second game (Fig. 6(a)), neural network
controllers (green) compete against poor random con-
trollers (red). In the first game, the rule-based robots
reach the green goal before the neural network based
controllers can find the red goal. On the other hand,
in the second game, the poorer random controllers are
not able to make progress toward the green goal and
the neural network based controllers eventually find
the red goal and win the game.

These results imply that the functional quality of
the evolved controller is somewhat less than that of
the hand coded rule base. This is compared to the base
line negligible abilities of the random controller. The
evolved controller was able to beat the random con-
troller in every game played to completion. It should
be noted that identical or equally matched controllers
would receive the same number of wins when compet-
ing against one another in a set of reciprocal games.
For example, the rule-based controller would receive
5 out of 10 wins on average when played against a
copy of itself, or 50%. Also, the rule based controller
wins against the random controller 100% of the time
(data not shown).

As noted inSection 1, evolved behavioral robotics
control systems do not yet rival well designed sophisti-
cated knowledge-based controllers. Nonetheless, these
results indicate that in this case, an evolved controller
can beat a hand coded controller a fraction of the time.

5. Conclusions and future research

In this paper, a new evolutionary robotics environ-
ment was described and initial experimental results
were presented. This research testbed was developed
to address several current issues in the field of ER.
These include questions about the extension of current
ER methods to more complex problems. In particular,
the feasibility of using evolutionary computing meth-

ods to evolve teams of mobile robots to play compet-
itive games was investigated. A tournament training
performance evaluation function was implemented.
This fitness function was used to evolve controllers
for teams of robots to play a benchmark competitive
game,Capture the Flag. The fitness function was not
based on game specific factors and could be used on
other multi-robot tasks that can be formulated into
competitive games. The use of competitive perfor-
mance evaluation allows for the improvement of be-
havior without the need for an absolute performance
measure.

This work will be extended by applying the com-
petitive relative performance metric to other related
mobile robot behaviors and by investigating the re-
lated training dynamics. We will investigate the possi-
bility of improving training measures without adding
more task-specific information. Alterations of the
training metric could include the weighting of some
tournaments more highly than others. Tournaments in
which some controllers win many more than others
carry more fitness information than tournaments in
which all controllers win nearly the same number of
games. It may also be of interest to investigate the
effects of game initialization on controller evolution.
This work used random game initializations for each
tournament. Another approach would be to select sev-
eral game starting configurations and use only these.
This method would run the risk of controllers learning
environment specific behaviors that would not gen-
eralize well but could reduce the negative effects of
poor game initializations that result in equal relative
scores for all controllers and thus generate no selective
pressure.

References

[1] F. Gomez, R. Miikkulainen, Incremental evolution of complex
general behavior, Adaptive Behavior 5 (1997) 317–342.

[2] J. Xiao, Z. Mickalewicz, L. Zhang, K. Trojanowski, Adaptive
evolutionary planner/navigator for mobile robots, IEEE
Transactions on Evolutionary Computing 1 (1) (2000) 18–28.

[3] M. Quinn, Evolving communication without dedicated
communication channels, in: J. Kelemen, P. Sosik (Eds.),
Advances in Artificial Life: Sixth European Conference on
Artificial Life (ECAL 2001), Prague, Czech Republic, 2001,
pp. 357–366.

[4] M. Quinn, Evolving cooperative homogeneous multi-robot
teams, in: Proceedings of the IEEE/RSJ International

A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150 149

Conference on Intelligent Robots and Systems (IROS 2000),
vol. 3, Takamatsu, Japan, 2000, pp. 1798–1803.

[5] J. Kodjabachian, J.A. Meyer, Evolution and development of
neural networks controlling locomotion, gradient-following,
and obstacle avoidance in artificial insects, IEEE Transaction
on Neural Networks 9 (5) (1998) 796–812.

[6] M. Potter, L.A. Meeden, A. Schultz, Heterogeneity in the
coevolved behaviors of mobile robots: the emergence of
specialists, in: Proceedings of the 17th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann,
2001.

[7] D. Filliat, J. Kodjabachian, J.A. Meyer, Incremental evolution
of neural controllers for navigation in a 6 1egged robot,
in: Sugisaka, Tanaka (Eds.), Proceedings of the Fourth
International Symposium on Artificial Life and Robotics, Oita
University Press, 1999.

[8] N. Jakobi, Running across the reality gap: octopod locomotion
evolved in a minimal simulation, in: P. Husbands, J.-A. Meyer
(Eds.), Evolutionary Robotics: First European Workshop,
EvoRobot98, Springer, 1998, pp. 39–58.

[9] D. Floreano, S. Nolfi, F. Mondada, Competitive
co-evolutionary robotics: from theory to practice, in: R.
Pfeifer, From Animals to Animats 5, Proceedings of the Fifth
International Conference on Simulation of Adaptive Behavior
(SAB’1998), MIT, Cambridge, MA, 1998.

[10] D. Floreano, F. Mondada, Evolution of homing navigation in
a real mobile robot, IEEE Transactions on Systems Man, and
Cybernetics. Part B: Cybernetics 26 (3) (1996) 396–407.

[11] N. Jakobi, P. Husbands, I. Harvey, Noise and the reality
gap: the use of simulation in evolutionary robotics, in: F.
Moran, A. Moreno, J. Merelo, P. Chacon (Eds.), Advances in
Artificial Life, Proceedings of the Third European Conference
on Artificial Life, Lecture Notes in Artificial Intelligence, vol.
929, Springer, 1995, pp. 704–720.

[12] R.A. Watson, S.G. Ficici, J.B. Pollack, Embodied evolution:
distributing an evolutionary algorithm in a population of
robots, Robotics and Autonomous Systems 39 (1) (2002) 1–
18.

[13] I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi,
Evolutionary robotics: the Sussex approach, Robotics and
Autonomous Systems 20 (2–4) (1997) 205–224.

[14] M. Mataria, D. Cliff, Challenges in evolving controllers for
physical robots, Robotics and Autonomous Systems 19 (1)
(1996) 67–83.

[15] S. Nolfi, D. Floreano, Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-organizing Machines,
MIT, Cambridge, MA, 2000.

[16] H. Lund, J. Hallman, Evolving sufficient robot controllers,
in: Proceedings of the IEEE International Conference on
Evolutionary Computation, 1997, pp. 495–499.

[17] D. Floreano, J. Urzelai, Evolutionary robots: the next
generation, in: Proceedings of the Seventh International
Symposium on Evolutionary Robotics (ER2000), From
Intelligent Robots to Artificial Life, AAI Books, 2000,
pp. 231–266.

[18] W. Lee, Evolving complex robot behaviors, Information
Sciences 121 (1–2) (1999) 1–25.

[19] H.H. Lund, O. Miglino, L. Pagliarini, A. Billard, A. Ijspeert,
Evolutionary robotics—a children’s game, evolutionary
computation, in: Proceedings of the IEEE World Congress
on Computational Intelligence, 1998, pp. 154–158.

[20] F. Kaplan, P. Oudeyer, E. Kubinyi, A. Miklosi, Robotic clicker
training, Robotics and Autonomous Systems 38 (3–4) (2000)
197–206.

[21] K. Chellapilla, D.B. Fogel, Evolving an expert checkers
playing program without using human expertise, IEEE
Transactions on Evolutionary Computation 5 (4) (2001) 422–
428.

[22] A. Lubberts, R. Miikkulainen, Co-evolving a Go-playing
neural network, in: Coevolution: Turning Algorithms upon
Themselves, Birds-of-a-Feather Workshop, Genetic and
Evolutionary Computation Conference (GECCO-2001), San
Francisco, 2001.

[23] J. Galeotti, The EvBot: a small autonomous mobile robot for
the study of evolutionary algorithms in distributed robotics,
MS Thesis, North Carolina State University, 2002.

[24] F. Southley, F. Karray, Approaching evolutionary robotics
through population-based incremental learning, in: Proce-
edings of the IEEE Conference on Systems, Man, and
Cybernetics, vol. 2, 1999, pp. 710–715.

[25] S. Nolfi, Evolving non-trivial behaviors on real robots,
Robotics and Autonomous Systems 22 (3–4) (1997) 187–198.

[26] F. Gruau, Automatic definition of modular neural networks,
Adaptive Behavior 2 (1995) 151–183.

[27] J. Galeotti, S. Rhody, A. Nelson, E. Grant, G. Lee,
EvBots—the design and construction of a mobile robot
colony for conducting evolutionary robotic experiments, in:
Proceedings of the ISCA 15th International Conference
on Computer Applications in Industry and Engineering
(CAINE-2002), San Diego, CA, November 7–9, 2002,
pp. 86–91.

[28] I. Ashiru, C.A. Czarnecki, Evolving communicating
controllers for multiple mobile robot systems, in: Proceedings
of the IEEE International Conference on Robotics and
Automation, vol. 4, 1998, pp. 3498–3503.

[29] J.R. Koza, Evolution of subsumption using genetic
programming, in: F.J. Varela, P. Bourgine (Eds.), Toward a
Practice of Autonomous Systems, Proceedings of the First
European Conference on Artificial Life, MIT, Cambridge,
MA, 1992, pp. 110–119.

[30] D.B. Fogel, Evolutionary Computation, Toward a New
Philosophy of Machine Intelligence, 2nd Ed., IEEE Press,
Piscataway, NJ, 2000.

[31] M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, Cambridge, MA, 1998.

[32] S. Nolfi, D. Floreano, Co-evolving predator and prey robots:
Do ‘arms races’ arise in artificial evolution? Artificial Life
4 (4) (1998) 311–335.

[33] D. Cliff, G.F. Miller, Tracking the red queen: measurements
of adaptive progress in co-evolutionary simulations, in: F.
Moran, A. Moreno, J.J. Merelo, P. Cachon (Eds.), Advances
in Artificial Life, Proceedings of the Third European
Conference on Artificial Life (ECAL95), Lecture Notes in
Artificial Intelligence, vol. 929, Springer, 1995, pp. 200–
218.

150 A.L. Nelson et al. / Robotics and Autonomous Systems 46 (2004) 135–150

A.L. Nelson was born in Laramie,
Wyoming, in 1967. He received his B.S.
degree from the Evergreen State Col-
lege in Olympia, Washington in 1990.
He received his M.S. degree in Elec-
trical Engineering from North Carolina
State University in 2000 and his Ph.D.
in Electrical Engineering at the Center
for Robotics and Intelligent Machines at
North Carolina State University in 2003.

Currently, his is a Visiting Scholar in the Department of Com-
puter Science and Engineering at the University of South Florida.

His main research interests are in the fields of autonomous
distributed robotic control with a particular focus on cooperative
multi-robot colonies and automatic controller synthesis. Currently,
his research is focused on the evolution of artificial neural net-
works and fuzzy rule sets for the control teams of autonomous
mobile robots. His long-term goal is the development of fully
autonomous environmentally situated intelligent robots.

E. Grant is the Director of the Cen-
ter for Robotics and Intelligent Machines
(CRIM) at North Carolina State Univer-
sity and Associate Professor of Electrical
and Computer Engineering. He earned a
Bachelor of Science (Hons) in Mechani-
cal Engineering from Dundee College of
Technology (now University of Abertay
Dundee) in 1969, Master of Engineering
in Mechanical Engineering (Fluid Power

Control) from the University of Sheffield in 1972, and a Ph.D. in
Computer Science from the University of Strathclyde in 2000. Dr
Grant is a Chartered Engineer (C.Eng.), a Fellow of the Institution

of Mechanical Engineers (F.I.Mech.E.), and a Senior Member of
the Institute of Electrical and Electronics Engineers (S.M.I.E.E.E.).
He was the Founding Chairman of the United Kingdom and Re-
public of Ireland Chapter of the I.E.E.E. Robotics and Automation
Society. He is an Associate Editor of the International Journal
of Robotics and Autonomous Systems. His research interests are
in the areas of knowledge-based control of robotic systems and
dynamic systems, evolutionary robotic systems, machine learning
with applications to medical image diagnosis, e-textiles for con-
formal surfaces for robots, and search and rescue robots.

T.C. Henderson received his B.S. degree
in Math from Louisiana State University
in 1973 and Ph.D. in Computer Science
from the University of Texas at Austin
in 1979. He is currently the Professor of
Computer Science in the School of Com-
puting at the University of Utah. He has
been at Utah since 1982, and was an Vis-
iting Professor at DLR in Germany in
1980, and at INRIA in France in 1980

and 1987, and at the University of Karlsruhe in Germany in 2003.
Professor Henderson is the author of Discrete Relaxation Tech-
niques (University of Oxford Press), and Editor of Traditional and
Non-Traditional Robotic Sensors (Springer-Verlag). His research
interests include autonomous agents, robotics and computer vision,
and his ultimate goal is to help realize functional androids. He has
produced over 200 scholarly publications, and has been principal
investigator on over $8M in research funding. Prof. Henderson
is a Fellow of the IEEE, and received the Governor’s Medal for
Science and Technology in 2000. He enjoys good dinners with
friends, reading, playing basketball and hiking.

	Evolution of neural controllers for competitive game playing with teams of mobile robots
	Introduction
	Evolutionary versus knowledge-based autonomous robot control: Why pursue ER?
	The future of evolutionary robotics: fitness evaluation in evolving populations of robot controllers
	Using competitive tournaments to evaluate the relative fitnesses of robot controllers

	A competitive tournament based multi-robot evolutionary robotics research environment
	The evolutionary neural network architecture
	The EvBot platform and environment
	Video range-finding emulation sensors
	The coupled simulation environment

	The competitive tournament evolutionary algorithm
	Performance function specification in evolutionary robotics
	Neural network genetic representation and mutation
	The evolutionary training algorithm

	Results
	Experimental setup
	Behavior of evolved robot controllers in simulation and in reality
	Measuring the performance of evolved controllers

	Conclusions and future research
	References

