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Abstract

This paper presents results generated with a new evolutionary robotics (ER) simulation environment and its complemen-
tary real mobile robot colony research test-bed. Neural controllers producing mobile robot maze searching and exploration
behaviors using binary tactile sensors as inputs were evolved in a simulated environment and subsequently transferred to and
tested on real robots in a physical environment. There has been a considerable amount of proof-of-concept and demonstration
research done in the field of ER control in recent years, most of which has focused on elementary behaviors such as object
avoidance and homing. Artificial neural networks (ANN) are the most commonly used evolvable controller paradigm found in
current ER literature. Much of the research reported to date has been restricted to the implementation of very simple behaviors
using small ANN controllers. In order to move beyond the proof-of-concept stage our ER research was designed to train larger
more complicated ANN controllers, and to implement those controllers on real robots quickly and efficiently. To achieve this
a physical robot test-bed that includes a colony of eight real robots with advanced computing and communication abilities was
designed and built. The real robot platform has been coupled to a simulation environment that facilitates the direct wireless
transfer of evolved neural controllers from simulation to real robots (and vice versa). We believe that it is the simultaneous
development of ER computing systems in both the simulated and the physical worlds that will produce advances in mobile
robot colony research. Our simulation and training environment development focuses on the definition and training of our
new class of ANNs, networks that include multiple hidden layers, and time-delayed and recurrent connections. Our physical
mobile robot design focuses on maximizing computing and communications power while minimizing robot size, weight, and
energy usage. The simulation and ANN-evolution environment was developed using MATLAB. To allow for efficient control
software portability our physical evolutionary robots (EvBots) are equipped with a PC-104-based computer running a custom
distribution of Linux and connected to the Internet via a wireless network connection. In addition to other high-level computing
applications, the mobile robots run a condensed version of MATLAB, enabling ANN controllers evolved in simulation to be
transferred directly onto physical robots without any alteration to the code. This is the first paper in a series to be published
cataloging our results in this field.
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1. Introduction

1.1. Evolutionary Robotics

Evolutionary Robotics (ER) is a sub-field of Behav-
ioral Robotics[1] and is concerned with the applica-
tion of evolutionary computing methods to the area
of autonomous robotic systems control. One of the
central goals of ER is to develop automated methods
that can be used to evolve complex behavior-based
control strategies. For this reason, mobile robots and
robot colonies have been the focus of recent ER re-
search[2]. The main emphasis in ER research contin-
ues to be on the development of evolved controllers
and intelligent control systems rather than on robot
bodies and physical electro-mechanical system design.
There has been some disagreement in the field to this
view, and in [3,4] the evolution of robot bodies is
considered.

The design approach presented here defines a syn-
ergy between the simulated robot world and the physi-
cal mobile robot world in terms of intelligent controller
portability. It is finding the harmonious co-existence
between these two worlds that we believe will produce
advances in ER research.

In the past few years, a number of reports de-
scribing experimental proof-of-concept and demon-
strational ER research have been published. These
include the evolution of simple behaviors in small
mobile robots such as homing and obstacle avoidance
[5–7]. Other research groups have evolved controllers
for locomotion of legged robots using ER methods
[8–10]. These represent a step up in complexity due
to the increased number of degree of freedom (DOF)
associate with legged robots.

In this paper, a maze searching and navigation task
is investigated. Robots were equipped with five simple
binary tactile sensors. These sensors supply extremely
sparse data to the robot controllers about their environ-
ment. In order to overcome this, the controllers must
be able retain and respond to information from past
sensor readings. Purely reactive controllers generally
produce very sub-optimal behaviors when supplied
with such simple sensor inputs. The neural network
structure in this work was specifically designed to
be able to evolve temporal processing abilities. Our
results show that controllers do evolve control strate-
gies that rely on both current and past sensor readings

to resolve and respond to situations that would be
ambiguous to purely reactive controllers.

1.2. Evolutionary Robotics and mobile robot colonies

A crucial element in an ER research platform is
the physical robotic systems upon which evolved
controllers are to be instantiated. Much of the work
to date in ER has focused on computer simulation
and software environment development but has fallen
short of implementation in real robotic systems. For
instance, in[3–12] robot simulation environments
are described but the work is not extended to actual
physical implementations. There has, however, been
a fair amount of ER work implemented in real robots
[13–15]. Much of this research involves custom robot
platforms with limited computational power. There
are various small mobile robot platforms available.
Possibly the best known of these is the Khepera mo-
bile robot platform, a system that has been adopted for
ER research by various groups worldwide[16–18].
The Alice robots described in[19] have also been
used in several mobile robot research studies. These
are very small (40 mm) and they have a limited com-
putational power. The Millibots developed at Carnegie
Mellon [20] are small modular robots that can be re-
configured to make a heterogeneous population where
each robot has limited abilities, but can collaborate
with other population members to complete complex
tasks.

The research presented in this paper required a
small mobile robot platform, with dimensions that
could navigate within an in-door purpose built phys-
ical maze, but one with high computational and
communications capacities that would allow for the
transfer of ANN algorithms onto the physical robots.
Finding no such robot available, the CRIM team de-
signed and constructed a new evolutionary robotics
platform. This design has been fabricated to produce a
colony of eight mobile robots and is described briefly
in Section 3.

1.3. Artificial neural networks in ER

Artificial neural networks (ANN) have become the
computational structure of choice in ER. Recently
published ER literature contains numerous exam-
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ples of evolutionary neural computing development
environments aimed at the production of neural con-
trollers for mobile robots. For instance, in[21,22]
simulation environments for evolving multi-layer feed
forward networks are used to control mobile robots
with two driving wheels. In addition, Watson et al.
[23] describe a robot platform in which very sim-
ple networks containing several neurons are evolved
to perform homing tasks while instantiated in real
robots. With the possible exception of the neural con-
trollers developed for legged robot locomotion[8,15],
the majority of ER work reported to date makes use
of very simple ANN architectures and relatively small
networks are actually trained for use in real robots
[24]. Most of these networks are capable of little or no
temporal processing. Typical examples are the 4-unit
network used in[23] and the single layer networks
described in[14]. We believe that in order to move the
field of ER beyond the proof-of-concept stage, and to
develop intelligent robot controllers capable of sophis-
ticated and useful behaviors, mobile platforms need to
accommodate larger and more recurrent ANN topolo-
gies. Although ER work to date has demonstrated that
neural networks can be evolved to perform simple
robot behaviors, little has been shown about the pos-
sible generalization of such methods to more compli-
cated behaviors that require larger, more sophisticated
networks. In fact, larger evolutionary neural networks
are qualitatively distinct form their smaller simpler
counterparts especially with regard to training using
evolutionary methods. A major impetus for the devel-
opment of our ER research test-bed has been to inves-
tigate the evolution of larger, more complicated neural
controllers.

The ER research test-bed used in this work sup-
ports a generalized class of multi-layer ANN con-
trollers coupled to both simulated and real robots.
These networks contain both time-delayed and re-
current connections and are trained in a simulated
environment using genetic algorithms. The ER re-
search test-bed consists of several main elements,
including (1) a simulated mobile robot environment,
(2) a class of simulated mobile robot agents, (3) an
ANN-based controller structure and associated evolu-
tionary computation-based training environment, (4)
a colony of real mobile robots with advanced com-
puting and communications capabilities, and (5) a
physical test-bed (environment) for the real robots to

interact with. These elements will be discussed in the
following two sections.

A presentation and discussion of the training per-
formance metrics and results generated with this re-
search test-bed will be presented inSections 4 and 5.

2. The neuro-evolution and simulation
environment

2.1. The artificial neural network controllers

Here, we describe the neural network architec-
ture used in both the simulated, and real robots. The
networks are a class of multi-layered recurrent and
time-delayed neural networks. The delayed and recur-
rent connections impart the possibility of developing
temporal processing. In the case of the behaviors stud-
ied in this work, and owing to the very simple sensors
used by the robots, controllers that can make use of
temporal information have the potential to outperform
completely reactive controllers. Inputs from the mo-
bile robots sensors are fed into the neural networks
and the resulting outputs are applied as actuator com-
mand values to the mobile robot drive-wheel motors.
These networks can be considered as fully connected
generalizations of the Elman and Jordan networks
[25,26] and include recurrent connections from both
hidden layer and output neurons. In addition, the
networks have time-delayed input, hidden, and re-
current connections. These additional recurrent and
time-delayed connections allow for the potential of
temporal processing. In this work, the layered struc-
ture was specified before training and remained con-
stant during the course of training. Only the weights
of the networks were evolved. These layered networks
represent a large class of network topologies, but they
only very sparsely cover the space of all possible net-
works. However, setting a connection weight in a fully
connected network to zero is equivalent to removing
that connection, hence the weight-only search space
contains all network architectures of lower dimension.
In effect, manual selection of a particular network
layered structure and feedback level imposes an upper
limit on the complexity of the evolved architectures.

Sigmoid neurons were used in the hidden layers
while output layers consisted of either sigmoid or lin-
ear neurons. The particular activation functions for
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each of these neuron types are given inEqs. (1) and
(2), respectively:

ysig(u) = 1

1 + e−u
, (1)

ylin(u) = u, (2)

whereu is the sum of the weighted input connections:

u =
∑

i

wixi + wb (3)

andwi, xi, andwb are theith weight associated with
the ith input, and a bias weighted unity input, respec-
tively. All the weights associated a particular network
layer m, time delay levelt and recurrence levels, are
represented and stored in a separateN by I array. The
entire weight set for a given network is then given by
the multidimensional matrix:

W = [Wm,t,s]|m ∈ {1, . . . ,M},
t ∈ {1, . . . , T }, s ∈ {1, . . . , S}, (4)

where each sub-matrix ofW is an n by i matrix of
weights given by

Wm,t,s = [ w1 w2 · · · wN ]Tm,t,s (5)

and each column vector is an ordered set of weights
associated with a set of inputs subscripted byi ∈
{1, . . . , I} to thenth neuron (n ∈ {1, . . . , N}) of the
mth layer, for thetth time delay level, andsth recur-
rence level:

wn = [ w1 w2 · · · wI ]. (6)

M, T, andS, are the total number of network layers,
maximum degree of time-delayed connections, and the
maximum feedback depth to previous layers of the
recurrent connections, respectively.

A generalized neural network specification and evo-
lutionary training environment for this type of network
was developed in MATLAB.Fig. 1 contains two typ-
ical network configurations. In both Network A and
Network B (Fig. 1(a) and (b)), the thicknesses of the
connection lines are proportional to the absolute values
of their particular associated weights. These network
connection graphs are generated by the evolutionary
training environment and show visually the changes
occurring in the networks during training.

2.2. The simulation environment

The simulation environments consist of planar grids
in which each grid element is either solid/occupied or
space/transparent. The material arrangement in each
environment is discretized. The space its self is a con-
tinuous region inR2 such that simulated robot agents
may exist at any real valued point within the range of
the environment.

In each environment, a variable numbern of robot
agents is maintained. Each robot agent consists of a
data structure that stores the robot’s current position,
orientation, sensor input readings, and actuator output
values. In addition a separate unique neural controller
structure is associated with each robot.

The mobile robots have two motor-wheel actuators,
one on each of the right and left sides of the robot.
This is a common and simple drive-wheel arrangement
found in many mobile robots and allows robot agents
to turn in any direction or move along any diameter arc
by varying the inputs to the wheel motors (deferential
steering).Fig. 2 shows several simulated worlds and
populations of simulated robots agents.

2.3. The evolutionary training algorithm

The neural network controllers were trained us-
ing evolutionary computing methods in conjunction
with the robot simulation environment. The neural
networks were trained using a genetic algorithm to
directly adjust connection weights. Selection was
based on a performance fitness evaluation function
(described later in this section).

Within the training environment, connection
weights can be initialized to small random values
from a single random distribution, or from different
distributions that depend on the recurrence and de-
gree of time delay of the particular connection. For
the general case, weights were initialized using the
following equation:

w = Rµ(m)τ(t)σ(s), (7)

whereµ(m) is linearly decreasing inm, andτ(t) and
σ(s) are monotonically decreasing exponentials with
maxima of 1. Herem, t, and s represent the layer
depth, the degree of temporal delay, and the degree
of spatial feedback, respectively, associated with a
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Fig. 1. Example schematic representations of two neural networks developed by the evolutionary neural computing environment. Network
A is a simple feed forward single hidden layer Perceptron. Network B includes two hidden layers and both time-delayed and hidden layer
feedback connections.

particular connection/weight.R is a number from a
flat random distribution on{−1, 1}. R is re-sampled
for each weight initialization. The effect of the weight
initialization equation (7) is that initial weight values
closer to the input layer and with a lower degree of
recurrence, have larger magnitudes then those farther
into the network, and with a greater degree of recur-

rence. Whenµ(m) = k is constant, andt and s are
constant unity functions, all weights are initialized to
random numbers in the range of−k to +k.

The chromosome data structureC is a set of real val-
ued scalar numbers where each number corresponds
directly to a particular weightw in the neural network
weight setW, from Eqs. (5) and (6). An individual
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Fig. 2. Two example simulated maze environments including sim-
ulated mobile robot agents with trained neural controllers. Dotted
lines indicate the paths taken by the robots during the course of
the simulation.

chromosome is specified as follows:

C = [c1, c2, . . . , cg]

= [w1,1,1,1,1, . . . , wm,t,s,n,i, . . . , wM,T,S,N,I ]. (8)

The rate (probabilistic frequency) of mutation for each
weight,w, is dependant on the size of the sub-matrix

of W to which it belongs, and is given by

Rate= 1

N ∗ I
Baserate, (9)

whereN and I are the dimensions of the sub-matrix
Wm,t,s to whichw belongs and Baserate is a whole
number.

Mutation magnitudes, for the weights in an ANN,
are scaled in a similar manner to the weight initializa-
tion values equation (7). Each weight mutation mag-
nitude depends on the location of the weight within
the network structure. Hence, for each member of the
robot controller population selected to be mutated, the
new chromosome elementsc′ of C are given by

c′ = c + �c = w + ηRPµ′(m)τ′(t)σ′(s), (10)

whereP ∈ {0,1} is determined by the rate of mutation
(Eq. (9)), µ′(m) linearly decreases withm, τ′(t) and
σ′(s) are monotonically decreasing exponentials with
maxima of 1, andη a base mutation magnitude or
step size. Also,R is a number from a flat random
distribution between−1 and 1.

The next generation population,P(k), is constructed
from the union following four sets derived from the
current population:

P(k)= {p1(k − 1) · · ·pm(k − 1)}
∪{p′

1(k − 1) · · ·p′
m(k − 1)}

∪{p2m+1(k − 1) · · ·pn−1(k − 1)}
∪p1(k − 2), (11)

wherepn ∈ P(k) is thenth individual of the population
at generationk, p′

n a mutated version ofpn, m/n the
fraction of the population that is mutated and replaced,
and n the total number of individuals in the popula-
tion. The populationP, is ordered from fittest to least
fit before Eq. (11) is applied. The result ofEq. (11)
is that 1/m of the fittest controllers are transferred un-
changed to the next generation, this same fraction of
the controller population is mutated and added to the
next generation, the single fittest member from two
generations past is included, and the remainder of the
next generation population is made up of the fittest re-
maining members of the current controller population.
The parametersn and m are set at the beginning of
each evolutionary run. Values forn andmare selected
by the user and reflect a trade-off between evolution-
ary speed and chaos during training. It was found that
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anm/n = 1/4 value giving a replacement rate of 25%
produces functional controllers for population size of
n = 20–100. The evolutionary algorithm described in
(11) is a form of greedy mutation-only(µ + λ) − EA
[27], with the inclusion of the fittest member of the
population 2 generations previous toP(t).

2.4. The performance fitness function

Several training fitness evaluation functions (objec-
tive functions) were used in this work. These include
metrics for controller selection during evolution and
metrics for performance of fully evolved controllers
operating in the real world.

Navigation and object avoidance behaviors are often
used as testing and benchmark behaviors in evolution-
ary robotics research. In this work, we focus the evolu-
tion mobile robot controllers for navigation behaviors
in a maze environment. Performance evaluation is
based on a weighted sum of several factors, including
the net offset between a robot’s starting position and
its final position, (netoffset), and whether or not the
robot becomes stuck on material within the simulated
environment, (stuck). The robots are required to make
as much progress through the maze as possible. This
is measured by the distance a robot travels through
a maze in a given number of time steps. Implicitly,
robots must learn to negotiate walls to maximize their
progress through a maze with many walls. A robot
that cannot avoid walls will soon become immobi-
lized when its path is blocked by a wall. In this work,
we use the following fitness function to select for nav-
igation behavior in an environment containing walls
(a maze):

F(pi)= k1 ∗ total curve length+ k2 ∗ net offset

+ k3 ∗ max offset+ k4 ∗ stuck, (12)

wherek1 tok4 are weighting factors. totalcurve length
is the line-integral of the full path followed by the robot
and maxoffset is the greatest linear distance obtained
by the robot and any time during its travel. The weight-
ing factors were derived empirically through trial and
error. The desired behavior is represented by the third
factor, maximum offset achieved by the robot from its
starting position. It was found, however, that inclusion
of two other distance measures, and an explicit penalty
for becoming stuck, were required to achieve evolu-

tion of navigation behaviors in a reasonable amount of
time. It should be noted that in all cases of performance
evaluation during evolution, run times were limited
so that the best possible performance would result in
travel from one side of the environment to the other
without time for a return trip. After evolution, result-
ing robot controllers were allowed to operate for much
longer periods of time to demonstrate the dynamics
of acquired behaviors. Performance fitnesses over
several simulation runs were averaged before each
generational selection to smooth effects of random
robot position initialization. During each generation,
the members of the population are initialized to ran-
dom locations in the simulated environment. Robots
do not interact with each other, but only with the
environment.

3. The EvBot mobile robot platform

In this section, we will give a brief overview of the
design and capabilities to the real mobile robot colony
used in this research. A full description of the robot
platform has been presented in another forthcoming
report[28].

A colony of eight robots has been constructed for
this and related ER research. Each robot is 127 mm
wide by 165 mm long by 152 mm high and is con-
structed on a two track treaded wheel base. Each robot
is equipped with a PC/104-based onboard computer
with the following specifications:

• 32 bit CPU core operating at 133 MHz.
• X86 software compatible.
• Embedded PC BIOS in Fail-safe Boot ROM.
• 8 Mb Disc-On-Chip/64 Mb RAM.
• 96 Mb ATA Flash Memory PC-Card.
• Linksys Wireless Ethernet PC-Card, 11 Mbps capa-

bility.

A custom Linux Distribution derived from RedHat
Linux 7.1 is used as the operating system and is ca-
pable of supporting MATLAB in addition to other
high-level software packages. The Linux OS running
on the robots includes specific alterations and sys-
tem commands that facilitate the easy acquisition and
transfer of sensor data into high-level controllers. The
robots are linked to one another and to the Internet
via a Linksys wireless network access point that can
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Fig. 3. A fully assembled EvBot mobile robot agent attached with whisker tactile sensor array.

handle up to 21 devices. A photograph of a fully as-
sembled EvBot is shown inFig. 3.

The EvBots can be fitted with various sensor, in-
cluding video cameras. In this work, all sensing of the
environment was performed using a whisker tactile ar-
ray of five forward facing binary sensors. A sensor is
triggered when its attached wire whisker comes into
physical contact with an object. The EvBot inFig. 3
is shown equipped with a whisker tactile sensor array.

Low-level control of the wheel drive motors and tac-
tile sensors is performed by a BasicX micro-controller.
An RS232 serial port interfaces the PC/104 CPU to
the Basic-X. The BasicX is programmable with up to
8000 lines of Visual Basic code and is capable of con-
trolling the robot independently of the PC/104, which
can be removed to make a very compact mobile robot
for applications that require less computing power.

4. Results and discussion

For our preliminary work, and for testing of our evo-
lutionary robotics platform, we chose the development

of maze navigation and searching behaviors. Such
object avoidance and navigation behaviors are com-
monly used as test behaviors[29] in ER. As discussed
in Section 2, ANN-based controllers were evolved in
simulation for maze navigation behaviors and relied
on binary tactile sensors for all sensing of the envi-
ronment. Robot controller selection during evolution
was based on performance as measured byEq. (12).
Evolved neural controllers were transferred to real
robots and tested in a real maze environment.

A number of neural network architectures were
found to be evolvable to perform the navigation task in
simulation and to retain ANN controller functionality
when transferred to real robots. In related work, it was
found that simple single hidden layer feed forward net-
works could be trained to navigate robot agents in sim-
ulation when a model of simulated laser range-finding
sensors was used[30]. Those evolved ANN con-
trollers had no capacity for temporal processing. The
resulting robot agents were effectively simple Brait-
enberg vehicles in that they produce motor actuator
commands in direct response to current range-finding
sensor readings. The level of information provided
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by range-finding sensors was sufficient so that purely
reactive controllers could perform the task reasonable
well in this environment. Simple binary tactile sen-
sors, on the other hand, require controllers to make
use of information from the past in order to overcome
perceptual aliasing. For example, a robot would re-
ceive all zeros (off) from its set of five tactile sensors
before it came in contact with a wall, and then again
after it had backed away from that wall. Controllers
must make use of information from sensor readings
from the past in order to distinguish between these
two conditions and avoid getting caught in behavioral
response loops. That is, a robot must do something dif-
ferent when it is backing away from a wall then when
it is approaching a wall, even though it ‘sees’ the same
thing (nothing) in both cases. In this work, we used
binary tactical sensors on our robots in part to study an
evolutionary system that would benefit significantly
from the acquisition temporal processing abilities.

In order to improve the potential functionality of
evolved ANN controllers, especially in the context
of simple tactile sensor inputs, robots agents with
ANN controllers capable of temporal processing were
trained in the simulation environments. It was found
that networks of moderate complexity produced the
best results in the least amount of simulation time.
Such networks had 1–3 hidden layers with 5–10 pro-
cessing units per layer, with all connections duplicated
and time delayed for 2–4 time steps. For example, the
best-evolved ANN controller tested in the real robots
and discussed below has 220 evolvable weights (see
Fig. 5). Although our benchmark maze navigation be-
havior requires some degree of sophistication at the
control level, an overly complex neural network struc-
ture was not found to be beneficial for this task. The
largest networks trained to date contained three hidden
layers of 10–20 neurons each, with recurrent connec-
tions to each of the three previous layers, and with all
inputs and connections duplicated and time delayed for
eight time steps. These networks contained approxi-
mately 7000 individually evolvable weights. Such net-
works with a high degree of recurrence were found to
be difficult and computationally expensive to train and
did not produce results superior to networks of moder-
ate complexity. It is likely that quite simple specially
formulated networks could be trained to accomplish
the task studied in this work. We specifically focused
on networks of greater complexity to show that larger

more complicated network architectures can be read-
ily evolved to perform these behaviors.

Fig. 4 shows training performance curves gener-
ated during two example evolutionary training runs.
At each generation the best, the average, and the worst
robot controller behavior performances were recorded
(as measured byEq. (12)). These were plotted against
generation (epoch) number over the course of train-
ing. As is the case in most evolutionary neural net-
work applications, the course of training is complex
and dynamic. Although GA-ANN training dynamics
are not the main emphasis of this research, such dy-
namics must be considered (often empirically) dur-
ing the parameter selection and initialization phases of
evolutionary network training. The progress of train-
ing is very dependant on network configuration and
on training parameter settings. For example, the train-
ing run shown in the first panel ofFig. 4 shows sev-
eral near-steady state plateaus followed by periods of
rapid improvements. On the other hand, training set
B shows a slow steady increase of performance level
during the course of training.

The evolved controllers were transferred to real
robots and tested in a real maze test-bed. The best
performing ANN controllers were found to allow
the real robots to wander through the real physical
maze indefinitely without getting stuck on maze wall,
and to allow the robots to make continual progress
through the maze, i.e. the robots did not start spinning
perpetually in one spot, or bump up against the same
wall over and over again.

In this work, the real robots are used mainly to
show that evolved controllers transfer to the real world
and function qualitatively similarly compared to sim-
ulation. The quality of transference from simulation
was evaluated in several ways. The responses of the
controllers to sensor signals in simulation and in the
real robots were compared and found to be identical.
This was to be expected because the evolved con-
trollers are identically similar in both cases. This sim-
ilarity is made possible by the platform architecture,
which allows direct transfer of evolved controllers
from simulation to real robots without the need for
any modification. In addition, the simple binary sen-
sors used provide only logic values of 0 or 1 and
inject no noise into either the simulated or real sys-
tems. There are however, two differences that cause
divergence between real and simulated behaviors.
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Fig. 4. Results from two evolutionary training sessions. In each graph, performance is plotted against generation epoch. Training set A
shows several near-steady state plateaus followed by periods of rapid improvements. Training set B shows a slow steady increase of
performance level over the course of training.

These are (1) differences between real and simulated
motor/robot-kinetic responses to a given motor com-
mand, and (2) differences in sensor triggering when
real and simulated robots are in proximity to objects
(and simulated objects).

The real and simulated motor outputs have been
calibrated to within 15%. The simulated tactile sensors
always trigger at a distance of exactly 50 mm from the
point at which the sensor whisker would be attached to
the robot body. In the real environment, and with the
real tactile sensors, the binary switch may trigger when
the base of the tactile whisker is anywhere between
25 and 100 mm from an object.

Fig. 5 shows the states of the best network con-
trollers before and after evolution (training). The per-
formance metric given inEq. (12)was used with the
following parameter settings:k1 = 0, k2 = 20, k3 =

20, k4 = 50. Training performance was averaged for
each controller for three simulations of 40 time steps
before selection and mutation occurred. Three hun-
dred and fifty generations were required to produce
the functional controllers tested on the physical robots.
The trained network was found to retain functionality
when transferred to a real robot operating in a physical
maze similar in dimensions to the one used in train-
ing. Fig. 6 shows the results of three separate tests
of the evolved controller operating in the simulated
environment and controlling a simulated robot agent
equipped with tactile sensors.

The robot agent in the panels ofFig. 6shows several
different behaviors that allow it to avoid walls and ex-
tract itself from corners. The simulated agent is able to
make progress through the environment. After encoun-
tering a wall and backing out of sensor range, robot
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Fig. 5. Two schematic plots of a single hidden layer time-delayed neural network. In panel (a) the network is shown before training. Panel
(b) shows the final trained version of the network.

agents displayed sequences of moves of up to five
times in duration before stabilizing to a steady-state
motor output. This indicates that the neural controllers
evolved responses that could make use of, or at least
responded to, sensor information receive up to five
time steps into the past.Fig. 7shows a close-up detail

of the path of a simulated robot agent in an encounter
with a wall. In the figure, the ovoid square shape is the
robot, the black bar at the bottom of the figure is the
wall, and the small dotted line indicates the path taken
by the robot. The light dots indicate the backward
moves made by the robot directly after encountering
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Fig. 6. Three simulation runs using an evolved controller to navigate a simulated agent with simulated tactile sensors through a maze. The
robot agent is shown in its final position after each run in the maze. The dotted line indicates the path taken by the robot.

the wall and two subsequent moves the robot made
while it was still in sensor contact with the wall. The
sequence of dark dots indicates the sequence of moves
(all rotating and/or forward) taken by the robot after
it was out of sensor contact with the wall, but before
its actuator commands had stabilized to a steady state.

Fig. 7. Close-up of a simulated robot encountering a wall. The
small dotted line indicates the path taken by the robot. The light
dots indicates the backward move made by the robot directly after
encountering the wall and two subsequent moves the robot made
while it was still in sensor contact with the wall. The sequence of
dark dots indicates the sequence or moves taken by the robot after
it was out of sensor contact with the wall, but before its actuator
commands had stabilized to a steady state.

The sequence of post-wall-encounter moves indicates
the evolved neural controller made use of past sensor
information to determine wheel motor commands.

Fig. 8shows several overhead views of the real maze
environment. In each panel ofFig. 8a real robot con-
trolled by the trained neural network controller dis-
played inFig. 5 is shown. The dotted line indicates
the path taken by the robot in each case.

The initial positions used for the real robot runs
displayed inFig. 8 correspond to those used in the
simulated world shown inFig. 6. It is clear that the
real robot agents in the physical environment deviate
from the paths taken by the simulated agents after a
few encounters with walls. This is expected since very
slight differences in approach angle and order of sen-
sor contact can produce markedly different responses
on the part of the evolved controllers. The controllers
were found to be quite dynamic and displayed a
wide variety of similar but not identical responses to
encounters with walls. Qualitatively, robots behaved
similarly in the simulation environment as in the real
world. It should be noted that when given exactly
the same time-sequence of sensor inputs, the real and
simulated agents do produce the same motor output
command sequences. Sensor input sequences can be
quite dynamic in both the simulated and real worlds,
however. For instance, a robot may encounter a wall,
back up and turn slightly before moving forward into
the wall again causing one or more new sensors to
be triggered. Very slight differences in the original
approach angle can in the end result in different tac-
tile sensor input sequences, which in turn can result
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Fig. 8. Three overhead views of the real maze test-bed. In each panel, an EvBot mobile robot with the same evolved neural controller
used for the simulation results displayed inFig. 6 is shown. The robot is shown in its final position after each run in the maze. The dotted
line indicates the path taken by the robot. Qualitatively, the sets of behaviors observed are similar to those.

in different behaviors. The exact responses for the
controllers evolved for this work were not fully char-
acterized. Assuming a possible sensor history of five
time steps, there would be 225 possible sensor input
sequences. (Note that a controller with no temporal
processing ability would be possible of producing
only 25 = 32 responses.)

5. Conclusions and future work

The research presented here developed real robot
controllers for robots instantiated in physical maze en-
vironments. Populations of controllers were evolved
in simulation and the best performing members of the
populations were transferred to a real robot and tested
in the physical environment. The simulation and evo-
lution environment and physical robot platforms were
developed together and coupled so that controllers
evolved in simulation could be transferred quickly and
easily to real robots. The neural controller architecture
supported time-delayed and recurrent connections to
allow for the evolution of temporal behaviors. Evolved
controllers did evolve to respond to temporal infor-
mation in order to overcome the inherent perceptual
aliasing associated with the simple binary tactile sen-
sors used by the robots in this research.

This work demonstrates the application and use of
an integrated evolutionary robotics research platform
that will continue to be developed for use in later re-
search. Further developments to the evolutionary train-
ing environment include support of additional artificial

neural network architectures and systems providing
for the co-evolution of network architectures and
evolution parameters in addition to network weights.

One area of interest is that of performance metrics
for complex tasks, especially the implicit specification
of performance through survival in artificial life envi-
ronments.

Eventual potential applications of this research in-
clude search and rescue, terrain mapping, and remote
autonomous exploration. In such application, groups
of robots may employ populations of evolved con-
trollers that can be selected and exchanged by the robot
agents in response to performance in the environment.
For example, a robot that has become immobilized
could request that another controller from the evolved
population be sent to it. Further work involving the
use of knowledge-based map information as input to
Behavioral Robotics neural network-based controllers
is planned for the development of more sophisticated
mobile robot colony cooperative navigation behaviors.
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