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Abstract—This paper presents a method that integrates 
MATLAB into a distributed behavioral robotics architecture.  
The architecture is written in Java and uses the Jini platform 
for distributed object registration, lookup and remote 
method invocation.  The method described here can be used 
to integrate MATLAB into any Java-based behavioral 
architecture.  The form of the integration allows a running 
MATLAB workspace to be accessed as a distributed object 
within the larger Java/Jini-based architecture.  This is 
beneficial because MATLAB scripts and functions may be 
called in interpreted form and can make full use of 
MATLAB tool boxes and have access to the MATLAB 
workspace environment.  This is not possible when 
MATLAB scripts are compiled into stand-alone C++, Java or 
p-code.  The use of the architecture is demonstrated on an 
iRobot ATRV-JR robot and remote computer workstation.  
Experiments have been conducted to quantify GPS and 
odometry errors in outdoor environments using automated 
methods supported by the distributed architecture.   

Keywords-mobile Distributed architecture; autonomous 
robot control; control architecture; MATLAB; Jini; GPS-based 
navigation; 

I.  INTRODUCTION 
This paper is motivated by the challenge to provide a 

platform to support advanced robot control research both at 
the AI level [1] and at the control-theoretic level [17].  The 
architecture, referred to in this paper as Distributed SFX, 
supports the implementation of large scale complex 
behavior-based robot control but still provides tools for low 
level experimental research within a single structured 
paradigm [5][10]. 

The overall distributed behavioral architecture is 
implemented in Java and uses Jini to manage distributed 
objects and services between robots and computers.  Using 
the JMatLink library [2], MATLAB is supported within the 
larger Java/Jini based system to allow for mathematical 
control-theoretic research and experimentation and for 
rapid prototyping of both behavioral and control modules 
and services.  Wrapping the MATLAB workspace 
environment with JMatLink, in conjunction with the Jini 
distributed object platform allows modules and services 
implemented as native interpreted MATLAB code to be 
accessed as remote and distributed objects.  Although it is 
the case that many behavioral architectures and languages 
support implementation of modules in different languages, 
the work described here allows MATLAB, a standard tool 

for developing control-theoretic concepts offline, to be 
directly incorporated into behavioral architectures. This 
provides advantages such as speed up of development, 
added flexibility of implementation. 

The architecture is currently implemented on iRobot 
ATRV-JR robots and computer workstations.  The robots 
have been fitted with a versatile array of sensors including 
GPS, planar laser range sensors, heat imaging video (FLIR) 
standard video, and inertial gyroscopes. To demonstrate the 
flexibility of the architecture, and to lay the groundwork 
for outdoor robot navigation, a series of tests have been 
performed.  These tests included automated GPS and 
odometry error quantification experiments (reported on in 
the results section of this paper).  During the tests, the 
distributed architecture ran both on a robot in the field and 
on a computer workstation in the lab.  This demonstrated 
distributed object sharing and allowed for flexible remote 
invocation of robot tests from the workstation.  

The paper is organized as follows.  Section II reviews 
the state of the art in current robot control architectures.  
Section III presents the architecture used in this research 
and describes the integration of MATLAB into the 
architecture. Section IV discusses the robots and the 
hardware used in this work, and section V presents results. 

II. ROBOT CONTROL ARCHITECTURES 
Robot control architectures are systems that provide 

structured methodologies and constraints for designing and 
implementing robot control systems.  There are many 
mobile robot control architectures described in the 
literature.  For a recent review of autonomous robot control 
architectures see [3].  This work primarily focuses on 
architectures as described in [3], rather than simple 
programming environments. We concentrate on process 
architectures that provide tools and paradigms for the 
design of robot control systems.  Software or 
implementation architectures, on the other hand, may be 
used to provide the underlying support for systems, such as 
communications and access to the robot sensors and 
actuators, but are not the direct focus of this work. 

Many of the large-scale architectures are organized 
around structured paradigms.  For example, in [4] an 
architecture designed to facilitate the fault tolerant control 
of teams of heterogeneous robots using (among other 
things) a mathematical model of motivation is discussed.  
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In [5] a distributed fault handling and robot task 
management architecture using a distributed Java 
framework is presented.  These architectures are designed 
to support robot control within methodological and 
conceptual constraints.   

Behavioral robotics architectures support the 
implementation of control within the behavior-based 
robotics paradigm [6].  Behavior-based robotics 
incorporates elements from artificial intelligence, 
engineering, and cognitive sciences.  Conceptually, 
behavior-based robot control provides methods for the 
parallel integration of simple behaviors to generate more 
complex emergent robot behaviors [1]. The Distributed 
SFX architecture used in this paper falls into this category 
as well as being a hybrid deliberative-reactive system.   

There are several examples of general-purpose robot 
control architectures designed to allow programmers as 
much design flexibility as easily as possible.  These are not 
meant to support any particular control paradigm and are 
designed to provide the greatest possible flexibility in robot 
control implementation and experimentation.  For example, 
in [7][8] a multi-robot control architecture using MATLAB 
as the primary computing environment is used for various 
intelligent robotics control experimentation.  That system is 
designed to allow access to all sensors and actuators (on 
both local and remote robots) in the form of functions that 
appear a standard MATLAB function calls.  Unicast and 
broadcast communications are also supported between 
robots and can be used to transmit anything from a single 
parsable set of characters to files containing interpreted 
code that can be added to a currently operating robot 
control structure.  In [9], a system designed to support 
distributed control in robots is presented.  That system is 
explicitly indented to provide as few restrictions on robot 
control programming as possible while allowing 
transparent platform and language independent access to 
services such as actuators and sensors. 

A potential drawback of very flexible robot control 
research architectures is that they often produce single-
purpose control programs that are difficult to maintain or 
expand.  For this reason, many structured paradigm base 
architectures restrict the fashion in which control can be 
structured. On the other hand, a potential drawback to 
relying on structured paradigm base architectures for 
primary research is that they may be too restrictive to 
easily support some aspects of the research design and 
experimentation process. 

There are very few robotics research architectures that 
explicitly enable both paradigm-based and flexible 
experimental research design methodologies.  One reason 
that such systems are not well represented is that the 
methodologies have a number of apparent 
incompatibilities.  For instance autonomous robot control 
research based in control theoretic and engineering 
backgrounds tends to take a very unstructured approach to 
software implementation of research.  Groups from 
Computer Science on the other hand, often focus their 
research on the software architecture itself, and place much 
more emphasis on the development of paradigms, and 
enforcement of good programming practices.  This often 

excludes or limits the agile programming and unstructured 
rapid prototyping design methods used in engineering 
research. 

The goal is to support general robot control research 
and experimentation while providing a pathway to 
incorporate results from such work into a larger structured 
distributed robotics control architecture.  The architecture 
discussed in this paper provides for a less structured 
flexible form of use of the system as a development phase 
and research tool, while the overall system provides a 
method for incorporation of the research products of the 
development phase into the production phase structured 
architecture. 

The architecture is being used to control real robots in 
outdoor environments.  As a case study, experimental 
results quantifying GPS and odometer errors under various 
test conditions are reported. 

III. THE RESEARCH ARCHITECTURE 
The robot control architecture is designed to 

accommodate autonomous distributed control of robots in 
outdoor environments.  It is designed to support proper 
implementation (in the software development sense) and at 
the same time be useful as a rapid experimentation research 
tool and programming environment (common in 
engineering research).  An overview of the architecture is 
presented below, along with the details of communication 
and integration between Java and MATLAB, followed by a 
discussion of the implementation on the ATRV-JR robots. 

A.  Distributed SFX  
Distributed SFX is a service-based distributed robot 

architecture designed to support behavior based control.  It 
is a distributed Java based descendant of the Sensor Fusion 
Effects architecture (SFX) [10].  The system makes use of 
modules to implement robot sensing and control related 
services. The architecture also supplies high-level service 
managers for the coordination and functional integration of 
low level modular services.  Modules are exported to a 
distributed run-time system as services with certain 
attributes and types.  Service may then be searched for 
(using a distributed-object lookup service) based on 
functional attributes rather than details of actual 
implementation or physical location. This type of 
architecture allows a decoupling of client and server. 
Clients, in an abstract sense, are interested in services with 
particular attributes that provide or consume certain types 
of data.  For example, processes running on one robot 
might need to request perceptual data from a remote source 
such as another robot.  In this case, a service able to supply 
the correct type of data would be searched for using its 
functional attributes (type of data, location of data source, 
ext.).  If a service is found, an interface (proxy) can be 
provided to the requesting process in a modular fashion 
regardless of where the requested services physically 
resides or how it is implemented at the local level. 
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Fig. 1.  Distributed SFX horizontal class hierarchy diagram.  
MATLAB is shown as a driver implementation module. 

 
 

Heterogeneity of robot platforms is specifically 
supported by the architecture.  This is done by representing 
services and components as distributed objects with 
consistent interfaces.  Different classes of robots, such as 
unmanned aerial vehicles (UAV) and unmanned ground 
vehicles (UGV) can use a common architecture and request 
remote sensor and other services based on features of the 
required service, regardless of the actual sensor or robot 
providing the information. 

Distributed SFX is written in Java and uses the Jini 
distributed service platform.  Each module is roughly 
divided into three components- the proxy, server and 
driver.  The proxy is the representation of the service that is 
transported around the network.  The proxy provides the 
ability to move code and data, and is not merely a local 
representation of a remote object.  The server is the 
representation of the service.  The server deals with the 
distributed system and mediates between the 
implementation of the service (the driver) and the remote 
clients.  The driver is the actual implementation of the 
service.  

In a distributed and changing environment the health of 
the overall network can change dramatically due to 
communication loss, hardware failure or other causes.  The 
use of a flexible service-oriented architecture allows for a 
more resilient system.  

In Fig. 1 a horizontal class hierarchy diagram is shown.  
The figure shows the hierarchical class relationship 
between the distributed and native local elements of a 
generic behavior within the system. 

B.  MATLAB Support 
There are a few examples of the integration of 

MATLAB and Java in engineering systems (see [11], [12]).  
However, the combination of Java and MATLAB for use 
in autonomous robot control is not well represented in the 

literature.  No major Java-based distributed robotics 
architectures that make use of MATLAB in its interpreted 
form have been reported on. 

Within the larger Java/Jini based Distributed SFX 
framework, MATLAB is currently supported for control 
module design and testing and research experimentation.  
The JMatLink class library [2] has been used to connect 
Java to MATLAB.  JMatLink includes methods and 
objects that allow Java to be used to initialize a workspace, 
write data members of any format to the workspace, read 
from the work space, and execute command line functions.  
The MATLAB workspace engine is accessed by delivering 
a formatted string to MATLAB and its behavior is identical 
to that of a user entering command via the MATLAB 
workspace command line. 

A full MATLAB engine and workspace is supported.  
This means that MATLAB scripts and functions can be run 
locally on the robots as interpreted code without the need 
to be compiled into stand-alone executables.   In addition, a 
full range of GUI and function based toolboxes are 
available for direct use on the robots.  The system allows of 
any format of testing that is possible within MATLAB, 
including onboard modeling and numerical processing, but 
supports the integration of these developments into the 
larger framework in a way that is compatible with the 
distributed service oriented architecture.   

The actual interaction between Java and MATLAB is 
summarized as follows:  First, a thread for MATLAB is 
activated by its Java service implementation using the 
JMatLink class library method engOpen.  This is outlined 
in the abbreviated Java code segment shown in Fig. 2.  
JMatLink is the constructor for the library and MatlabImpl 
inherits from the standard service implementation class 
within the Distributed SFX Java-based implementation. 

 

 
 

Fig. 2.  Abbreviated Java code initiating a new instance of a 
MATLAB engine and workspace. 

... 
import jmatlink.JMatLink; 
... 
private JMatLink matlink = new JMatLink; 
private MatlabRunner runner; 
... 
public class MatlabImpl ... { 
     ... 
     public void activate() ... { 
          ... 
          engine = matlink.engOpen(); 
          ... 
          runner = new MatlabRunner(); 
          runner.start(); 
     } 
     ... 
     private class MatlabRunner extends Thread { 
          ... 
     } 
}
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Fig. 3.  Abbreviated Java code to write data (in the form of a 

struct) to the MATLAB workspace and then call an interpreted 
MATLAB function using the data struct. 

 

Data are written to the MATLAB workspace and a 
formatted field struct is constructed using the 
engPutVariable and engEvalString methods from the 
JMatLink class library. 

Abbreviated Java code that builds a MATLAB data 
struct (sensorData) and then calls an interpreted 
MATLAB function (mFunction) with the struct as an 
argument is shown in Fig. 3. 

The code in Fig. 3 would generally be used within a 
thread runner method of the MatlabRunner class of Fig. 2.   
Note that mFunction will be some function written in 
MATLAB script and sensorData and result are both 
MATLAB variables existing within the workspace.   
Results are read from the MATLAB workspace back into 
Java variables using the JMatLink method 
engPutVariable.   

Fig. 4 shows the forms of support for MATLAB within 
the larger architecture.  Development phase and production 
phase support are provided.  

At the production level, for fully developed services, 
MATLAB is supported at the driver module 
implementation level discussed in the previous section.  It 
can be used as the native server implementation of a 
service.  The associated server and proxy handle the remote 
overhead and interaction with other services.  On the left of 
Fig. 4 within the Distributed SFX block a native service 
implemented in MATLAB is shown.  Note that many 
languages are supported for implementation of services and 
most services are currently implemented in Java.  The 
purpose of the figure is to illustrate the two forms in which 
MATLAB is used in the system. 

The MATLAB workspace on the right of Fig. 4 shows 
MATLAB’s relationship to the larger architecture when it 
is being used for research and module development.  This 
is considered the development phase.  In this form, 
MATLAB is used as a research tool in addition to being 
used for standard service module development and is not 
strictly constrained by the overall Distributed SFX 
architectural paradigm.     

Jmatlink
native JMatlink

Write Data to MATLAB
(Sensors readings,

Percepts)

Read Data From MATLAB
(Actuator Commands,

Processed Data)

MATLAB Module

MATLAB Module

MATLAB Module
(Developed Service

Implementation)

MATLAB Workspace

Control Loop
Body

MATLAB Module

Java/Jini

Research Experimentation and
Module Development Tool

Distributed SFX

Production Phase Development Phase

Completed service
implementation

(interaction with the larger
Distributed SFX architecture,

see Fig. 1)

 
 

Fig. 4.  Data flow diagram illustrating the relationship between 
MATLAB and the larger distributed Java/Jini based architecture.  

For research and development, a full MATLAB workspace is 
supported in the development phase (Development Phase).  In 

the production phase, fully developed modules are seen as local 
service implementations within Distributed SFX (Production 

Phase). 
 
 

In summary, the architecture supports research from its 
primary synthesis, to its mature implementation within a 
structured paradigm.  The architecture supports uniformity, 
compatibility and integration of high level AI elements and 
low level mathematical control-theoretic elements.  In 
addition, the architecture supports low level research 
experimentation without sacrificing the integrity of the 
larger structured distributed robotics behavior based 
paradigm.  

IV. ROBOTS AND HARDWARE 
The Distributed SFX architecture including integrated 

MATLAB support has been implemented on mobile robots 
and computer workstations.  The architecture’s 
functionality is demonstrated using a system consisting of 
one robot operating outdoors and one computer 
workstation located inside the laboratory.  

Distributed SFX has been implemented on iRobot 
ATRV-JR ground robots.  These robots have been 
equipped with a versatile array of sensors including 
scanning planar lasers, FLIR heat imaging video, standard 
video, GPS and inertial gyroscopes.  In addition, the robots 
have wheel odometers supplied by the manufacturer and 
managed by iRobot’s Mobility software. 

 

... 
matlink.engPutVariable(engine, “laserData” ,    

laserData.readLaser); 
matlink.engPutVariable(engine, “gpsData”, gps.readGps); 
 
matlink.engEvalString(engine, “sensorData. laserData =   
 laserData”); 
matlink.engEvalString(engine, “sensorData.gpsData =  

gpsData”); 
 
matlink.engEvalString(engine, “result =  

mFunction(sensorData.”); 
 
resultData = engGetVariable(engine, “result”); 
....   
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(a) 

 
(b) 

Fig. 5.  An ATRV-JR robot (a) in the CRASAR robotics lab and 
(b) outside on the USF campus near the CRASAR robotics lab. 

 
 

The ATRV-JR ground robots have PCs with 1GHz PIII 
processors and 2Gb ram.  The onboard computers include 
auxiliary 10 serial port cards, firewire and UBS to 
accommodate sensors and other equipment.  The robots 
were originally supplied with Linux RedHat 7.x from 
iRobot but have been upgraded to Linux 9.x.  The robots 
are capable of running locally any software that will run on 
a standard PC and are accessible via wireless Ethernet 
(802.11g).  Photos of the CRASAR ATRV-JR robots are 
shown in Fig. 5. 

The ATRV-JR in Fig. 5 (a) is shown with a SICK 
scanning planar laser mounted on the front of the vehicle, a 
pan/tilt unit with FLIR and standard video cameras 
attached to the front-top equipment rack, and inertial 
gyroscope and GPS mounted on the center-top equipment 
rack. 

The experiments present in this paper rely on GPS and 
odometry.  The GPS system used is a Synergy Systems 
LLC M12+ with evaluation board and a HAWK GPS 
antenna connected via serial link to the robot’s main 
computer.  The device uses proprietary filters and error 
estimation algorithms.  Both filtered and unfiltered 
readings are available to the robots. 

V. RESULTS 
Here we report on testing of robots in an outdoor 

environment using the architecture described above.  
Experiments to test and quantify GPS and odometer 
accuracy were performed in outdoor conditions.  GPS, and 
odometer errors were measured over the course of several 
benchmark test driving patterns, and under varying 
conditions.  

The tests were conducted by setting up and executing 
automated test sequences.  The distributed architecture 
operated on a system including a robot in the field and a 
computer workstation in the lab.  The experiments made 
use of MATLAB as supported in development mode as 
illustrated in Fig. 4 in section III above.  The Distributed 
SFX architecture managed all the sensor and actuator 
services as distributed objects.  MATLAB, was used to 
implement the automated test services on the robot, and to 
process and correlate test data within the larger Java/Jini 
based distributed architecture.  The larger Distributed SFX 
architecture also managed the tests at a high level including 
maintenance of distributed objects and services between 
the lab computer workstation and the robot.   

A. GPS based navigation 
The example tests conducted here serve both to 

demonstrate the functionality of the Distributed SFX 
architecture and to lay the groundwork for outdoor 
navigation with mobile robots using GPS.  In order to 
provide a context and motivation for the experiments, a 
short review of the use of GPS and odometry for 
positioning and navigation in mobile robots follows.   

Several references can be found in the literature that 
discuss testing and performance of GPS receivers in mobile 
robots. In [13], issues concerning the use of GPS for 
controlling and navigating an autonomous vehicle are 
addressed. In that work, several experiments were 
conducted to measure the accuracy of GPS and the 
availability of satellite fix for 3D GPS.  In [14] the use of a 
differential GPS (DGPS) is proposed for positioning in a 
single mobile robot.  In that work, limitations and 
variability in accuracy as functions of number and location 
of satellites are studied, as well as the affects of choice of 
the satellite to be used and the offset of the receiver’s 
location.   

In unstructured outdoor environments, Fused GPS and 
wheel odometry data have been proposed for use in 
absolute positioning of mobile robots.   For example, in 
[15] the authors propose a method for reducing errors in 
differential GPS measurements by incorporating 
information from robot position odometry. In that work, 
the authors present experimental results validating their 
approach.  In [16] another approach for outdoor navigation 
using GPS data and odometry is presented. Their 
methodology for vehicle navigating is based on the 
construction of covariance matrices for automatic 
localization computations that include the number, and 
location of, visible satellites as factors.  The matrices are 
built and maintained by sampling GPS data along a route 
and continuously updating the matrices to accommodate 
drift in GPS data quality. 
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In order to provide a baseline level of performance for  
the methods described above, and to improve the use of 
GPS and odometry for navigation it is beneficial to 
accurately measure relative and absolute GPS and 
odometry position error.  The experiments reported on in 
this section provide a quantification of such errors.      

B. Test Patterns 
During these tests, the robot automatically followed 

predetermined test patterns.  These included forward and 
backward motion along a straight line, tracing a rectangle, 
and tracing a circle.   The controller service modules for 
each of these test patterns produced predetermined timed 
sequences of movements and recorded all sensor and 
actuator related data over the course of each test. 

C.  Data Collection and Coordinate frames 
Data were recorded at each controller time step during 

each test-pattern driving session.  Data included GPS 
readings, actuator commands, odometry generated position, 
time stamp and other sensor readings (such as Laser range 
values).  For the test conditions used here, full control loop 
cycles required about 0.2 seconds to complete so data were 
collected at a rate of approximately 5 Hz.  

In order to relate the data collected during robot 
driving, several coordinate frames of reference must be 
kept track of.  These include the robot body-attached frame 
of reference, the robot’s internal world frame of reference, 
and the real world frame or reference.  Although these 
frames are technically 3 dimensional, we consider only the 
x and y-axis of each frame since these tests were conducted 
under very nearly planar conditions (mixed dirt and grass 
flat terrain). 

The real world coordinate frame of reference is defined 
here to have its origin at the initial position of the robot at 
the start of a driving session, and to be oriented so that the 
positive x-axis points toward the East and the positive y-
axis points toward the North. GPS data are converted to 
meters and related to this coordinate frame. 

The robot’s internal world frame is used to record and 
maintain position and orientation calculated from 
odometry.  The robot internal reference frame deviates 
from the real world by the cumulative error generated by 
the odometry system. 

The robot body-attached frame of reference is defined 
with its origin at the center of the robot and its x-axis 
pointed in the forward facing direction of the robot.  The 
robot is initializes at the beginning of each driving session 
so that its body-attached frame is coincident with its 
internal world frame. 

 
Fig. 6.  GPS points and points calculated from odometry for an 

example linear test pattern. 
 
 

 
Fig. 7.  GPS points and points calculated from odometry for a 

rectangular test pattern. 
 
 

 
Fig. 8.  GPS points and points calculated from odometry and for 

an example of the circular test pattern. 
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D. GPS and Odometry Results 
For each of the test patterns, the robots were driven 5 

times (for a total of 15 runs).  Each test was initiated 
remotely from a computer workstation in the lab using the 
distributed architecture.   

Within the MATLAB-based test service, data were 
collected, stored, and processed.  At each iteration of 
control (time step), the following data were collected:  GPS 
lock status, filtered GPS latitude and longitude coordinates, 
unfiltered GPS latitude and longitude coordinates, 
incremental x and y positions based on odometry, linear 
and rotational velocity based on odometry and all 
calculated actuator control commands.  These data were 
used to reconstruct the robot’s sensor history and internal 
record of position history. 

Figures 6, 7 and 8 show GPS and wheel odometry 
position data collected on the linear, rectangular, and 
circular test patterns respectively.  Each panel shows data 
collected over a single example run of each test pattern.  

The paths taken by the robots during tests (as judged by 
GPS and odometry position measurement methods) are 
shown as sequences of points.  All data have been 
converted to meters (m) and oriented as they would be in a 
standard map.  During each run, the origin was set to be the 
starting point of the robot.  In all three cases the positions 
calculate from odometry and positions measured from GPS 
deviate from one another over the courses of the tests.  In 
the rectangular and circular tests, odometry positions and 
GPS positions deviate by approximately 2.0 meters and 6.0 
meters on average respectively.  This is to be expected 
because odometry errors are cumulative and thus 
influenced by the size and duration of the test patterns.  
The rectangular test used a square with 10 meter sides as 
compared to the much lager circular test patter which used 
a circle with a 25 meter radius.  Below, we consider 
absolute GPS and odometry errors. 

In order to quantify GPS and odometry errors, with 
respect to the real world coordinate frame of reference, the 
robots were driven along a linear course with known 
intermediate points. 

The cumulative linear odometry error was found to be 
0.4% (1/5 of one percent) per meter traveled.  Errors were 
averaged over 6 runs of traveling forward and back along a 
course of 14.8 meters over dirt and grass. 

Filtered GPS position error was calculated as the 
average difference between each GPS reading and the 
robot’s true position at the time of reading.  The robot was 
driven along a known linear path similar to the one shown 
in Fig. 6.  A total of 5 tests were conducted on 3 different 
days.  The average GPS position error was found to be 0.91 
(m) with a standard deviation of error of 0.52 (m) over all 
of the test runs.  Note that a total of approximately 2400 
data points were used to generate the average error.  This 
actual position error is somewhat lower than, but consistent 
with estimated position errors reported in [13]. 

VI. CONCLUSION 
In this paper a novel form of integration of MATLAB 

into a distributed behavioral robotics control architecture 
was presented.  The architecture supports advanced robot 
control research both at the AI level and at the control-
theoretic level.  It is implemented in Java and uses Jini to 
manage distributed objects and services between robots and 
computers. The JMatLink Java library was used to 
incorporate MATLAB into the Distributed SFX 
architecture.  MATLAB within the architecture and servers 
the dual purposes of providing a versatile robot 
experimentation tool, and as a rapid module and service 
implementation tool.  Although modules and services can 
be implemented in many native languages, the ability to 
use interpreted MATLAB code is beneficial because it 
allows the efficient and direct transfer of research and 
development results generated in MATLAB into functional 
service implementations within the paradigm of the 
distributed behavioral architecture.   

The architecture was used to conduct automated 
experiments to quantify GPS and odometry position errors 
in mobile robots in an outdoor environment.  During the 
experiments all data collection, robot sensor and actuator 
services and higher level components were managed by the 
architecture as distributed objects existing on a system 
consisting of one robot in the field and an additional 
computer workstation in the lab.  These results show the 
versatility of the architecture and lay the ground work for 
GPS and odometry based positioning control for the 
ATRV-JR mobile robot platforms used here. 
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