
A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

Incorporation of MATLAB into a Distributed Behavioral
Robotics Architecture

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy
Center for Robot Assisted Search and Rescue (CRASAR)

Dept Computer Science and Engineering
University of South Florida

Tampa, Florida 33620
Email: aanelson@csee.usf.edu

Abstract—This paper presents a method that integrates
MATLAB into a distributed behavioral robotics architecture.
The architecture is written in Java and uses the Jini platform
for distributed object registration, lookup and remote
method invocation. The method described here can be used
to integrate MATLAB into any Java-based behavioral
architecture. The form of the integration allows a running
MATLAB workspace to be accessed as a distributed object
within the larger Java/Jini-based architecture. This is
beneficial because MATLAB scripts and functions may be
called in interpreted form and can make full use of
MATLAB tool boxes and have access to the MATLAB
workspace environment. This is not possible when
MATLAB scripts are compiled into stand-alone C++, Java or
p-code. The use of the architecture is demonstrated on an
iRobot ATRV-JR robot and remote computer workstation.
Experiments have been conducted to quantify GPS and
odometry errors in outdoor environments using automated
methods supported by the distributed architecture.

Keywords-mobile Distributed architecture; autonomous
robot control; control architecture; MATLAB; Jini; GPS-based
navigation;

I. INTRODUCTION
This paper is motivated by the challenge to provide a

platform to support advanced robot control research both at
the AI level [1] and at the control-theoretic level [17]. The
architecture, referred to in this paper as Distributed SFX,
supports the implementation of large scale complex
behavior-based robot control but still provides tools for low
level experimental research within a single structured
paradigm [5][10].

The overall distributed behavioral architecture is
implemented in Java and uses Jini to manage distributed
objects and services between robots and computers. Using
the JMatLink library [2], MATLAB is supported within the
larger Java/Jini based system to allow for mathematical
control-theoretic research and experimentation and for
rapid prototyping of both behavioral and control modules
and services. Wrapping the MATLAB workspace
environment with JMatLink, in conjunction with the Jini
distributed object platform allows modules and services
implemented as native interpreted MATLAB code to be
accessed as remote and distributed objects. Although it is
the case that many behavioral architectures and languages
support implementation of modules in different languages,
the work described here allows MATLAB, a standard tool

for developing control-theoretic concepts offline, to be
directly incorporated into behavioral architectures. This
provides advantages such as speed up of development,
added flexibility of implementation.

The architecture is currently implemented on iRobot
ATRV-JR robots and computer workstations. The robots
have been fitted with a versatile array of sensors including
GPS, planar laser range sensors, heat imaging video (FLIR)
standard video, and inertial gyroscopes. To demonstrate the
flexibility of the architecture, and to lay the groundwork
for outdoor robot navigation, a series of tests have been
performed. These tests included automated GPS and
odometry error quantification experiments (reported on in
the results section of this paper). During the tests, the
distributed architecture ran both on a robot in the field and
on a computer workstation in the lab. This demonstrated
distributed object sharing and allowed for flexible remote
invocation of robot tests from the workstation.

The paper is organized as follows. Section II reviews
the state of the art in current robot control architectures.
Section III presents the architecture used in this research
and describes the integration of MATLAB into the
architecture. Section IV discusses the robots and the
hardware used in this work, and section V presents results.

II. ROBOT CONTROL ARCHITECTURES
Robot control architectures are systems that provide

structured methodologies and constraints for designing and
implementing robot control systems. There are many
mobile robot control architectures described in the
literature. For a recent review of autonomous robot control
architectures see [3]. This work primarily focuses on
architectures as described in [3], rather than simple
programming environments. We concentrate on process
architectures that provide tools and paradigms for the
design of robot control systems. Software or
implementation architectures, on the other hand, may be
used to provide the underlying support for systems, such as
communications and access to the robot sensors and
actuators, but are not the direct focus of this work.

Many of the large-scale architectures are organized
around structured paradigms. For example, in [4] an
architecture designed to facilitate the fault tolerant control
of teams of heterogeneous robots using (among other
things) a mathematical model of motivation is discussed.

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

In [5] a distributed fault handling and robot task
management architecture using a distributed Java
framework is presented. These architectures are designed
to support robot control within methodological and
conceptual constraints.

Behavioral robotics architectures support the
implementation of control within the behavior-based
robotics paradigm [6]. Behavior-based robotics
incorporates elements from artificial intelligence,
engineering, and cognitive sciences. Conceptually,
behavior-based robot control provides methods for the
parallel integration of simple behaviors to generate more
complex emergent robot behaviors [1]. The Distributed
SFX architecture used in this paper falls into this category
as well as being a hybrid deliberative-reactive system.

There are several examples of general-purpose robot
control architectures designed to allow programmers as
much design flexibility as easily as possible. These are not
meant to support any particular control paradigm and are
designed to provide the greatest possible flexibility in robot
control implementation and experimentation. For example,
in [7][8] a multi-robot control architecture using MATLAB
as the primary computing environment is used for various
intelligent robotics control experimentation. That system is
designed to allow access to all sensors and actuators (on
both local and remote robots) in the form of functions that
appear a standard MATLAB function calls. Unicast and
broadcast communications are also supported between
robots and can be used to transmit anything from a single
parsable set of characters to files containing interpreted
code that can be added to a currently operating robot
control structure. In [9], a system designed to support
distributed control in robots is presented. That system is
explicitly indented to provide as few restrictions on robot
control programming as possible while allowing
transparent platform and language independent access to
services such as actuators and sensors.

A potential drawback of very flexible robot control
research architectures is that they often produce single-
purpose control programs that are difficult to maintain or
expand. For this reason, many structured paradigm base
architectures restrict the fashion in which control can be
structured. On the other hand, a potential drawback to
relying on structured paradigm base architectures for
primary research is that they may be too restrictive to
easily support some aspects of the research design and
experimentation process.

There are very few robotics research architectures that
explicitly enable both paradigm-based and flexible
experimental research design methodologies. One reason
that such systems are not well represented is that the
methodologies have a number of apparent
incompatibilities. For instance autonomous robot control
research based in control theoretic and engineering
backgrounds tends to take a very unstructured approach to
software implementation of research. Groups from
Computer Science on the other hand, often focus their
research on the software architecture itself, and place much
more emphasis on the development of paradigms, and
enforcement of good programming practices. This often

excludes or limits the agile programming and unstructured
rapid prototyping design methods used in engineering
research.

The goal is to support general robot control research
and experimentation while providing a pathway to
incorporate results from such work into a larger structured
distributed robotics control architecture. The architecture
discussed in this paper provides for a less structured
flexible form of use of the system as a development phase
and research tool, while the overall system provides a
method for incorporation of the research products of the
development phase into the production phase structured
architecture.

The architecture is being used to control real robots in
outdoor environments. As a case study, experimental
results quantifying GPS and odometer errors under various
test conditions are reported.

III. THE RESEARCH ARCHITECTURE
The robot control architecture is designed to

accommodate autonomous distributed control of robots in
outdoor environments. It is designed to support proper
implementation (in the software development sense) and at
the same time be useful as a rapid experimentation research
tool and programming environment (common in
engineering research). An overview of the architecture is
presented below, along with the details of communication
and integration between Java and MATLAB, followed by a
discussion of the implementation on the ATRV-JR robots.

A. Distributed SFX
Distributed SFX is a service-based distributed robot

architecture designed to support behavior based control. It
is a distributed Java based descendant of the Sensor Fusion
Effects architecture (SFX) [10]. The system makes use of
modules to implement robot sensing and control related
services. The architecture also supplies high-level service
managers for the coordination and functional integration of
low level modular services. Modules are exported to a
distributed run-time system as services with certain
attributes and types. Service may then be searched for
(using a distributed-object lookup service) based on
functional attributes rather than details of actual
implementation or physical location. This type of
architecture allows a decoupling of client and server.
Clients, in an abstract sense, are interested in services with
particular attributes that provide or consume certain types
of data. For example, processes running on one robot
might need to request perceptual data from a remote source
such as another robot. In this case, a service able to supply
the correct type of data would be searched for using its
functional attributes (type of data, location of data source,
ext.). If a service is found, an interface (proxy) can be
provided to the requesting process in a modular fashion
regardless of where the requested services physically
resides or how it is implemented at the local level.

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

Module

Remote Module

Driver

MATLAB

Proxy

Jmatlink
native

Server

JMatlink

Delegates to

Native Layer

Delegates to

uses

Fig. 1. Distributed SFX horizontal class hierarchy diagram.
MATLAB is shown as a driver implementation module.

Heterogeneity of robot platforms is specifically
supported by the architecture. This is done by representing
services and components as distributed objects with
consistent interfaces. Different classes of robots, such as
unmanned aerial vehicles (UAV) and unmanned ground
vehicles (UGV) can use a common architecture and request
remote sensor and other services based on features of the
required service, regardless of the actual sensor or robot
providing the information.

Distributed SFX is written in Java and uses the Jini
distributed service platform. Each module is roughly
divided into three components- the proxy, server and
driver. The proxy is the representation of the service that is
transported around the network. The proxy provides the
ability to move code and data, and is not merely a local
representation of a remote object. The server is the
representation of the service. The server deals with the
distributed system and mediates between the
implementation of the service (the driver) and the remote
clients. The driver is the actual implementation of the
service.

In a distributed and changing environment the health of
the overall network can change dramatically due to
communication loss, hardware failure or other causes. The
use of a flexible service-oriented architecture allows for a
more resilient system.

In Fig. 1 a horizontal class hierarchy diagram is shown.
The figure shows the hierarchical class relationship
between the distributed and native local elements of a
generic behavior within the system.

B. MATLAB Support
There are a few examples of the integration of

MATLAB and Java in engineering systems (see [11], [12]).
However, the combination of Java and MATLAB for use
in autonomous robot control is not well represented in the

literature. No major Java-based distributed robotics
architectures that make use of MATLAB in its interpreted
form have been reported on.

Within the larger Java/Jini based Distributed SFX
framework, MATLAB is currently supported for control
module design and testing and research experimentation.
The JMatLink class library [2] has been used to connect
Java to MATLAB. JMatLink includes methods and
objects that allow Java to be used to initialize a workspace,
write data members of any format to the workspace, read
from the work space, and execute command line functions.
The MATLAB workspace engine is accessed by delivering
a formatted string to MATLAB and its behavior is identical
to that of a user entering command via the MATLAB
workspace command line.

A full MATLAB engine and workspace is supported.
This means that MATLAB scripts and functions can be run
locally on the robots as interpreted code without the need
to be compiled into stand-alone executables. In addition, a
full range of GUI and function based toolboxes are
available for direct use on the robots. The system allows of
any format of testing that is possible within MATLAB,
including onboard modeling and numerical processing, but
supports the integration of these developments into the
larger framework in a way that is compatible with the
distributed service oriented architecture.

The actual interaction between Java and MATLAB is
summarized as follows: First, a thread for MATLAB is
activated by its Java service implementation using the
JMatLink class library method engOpen. This is outlined
in the abbreviated Java code segment shown in Fig. 2.
JMatLink is the constructor for the library and MatlabImpl
inherits from the standard service implementation class
within the Distributed SFX Java-based implementation.

Fig. 2. Abbreviated Java code initiating a new instance of a
MATLAB engine and workspace.

...
import jmatlink.JMatLink;
...
private JMatLink matlink = new JMatLink;
private MatlabRunner runner;
...
public class MatlabImpl ... {
 ...
 public void activate() ... {
 ...
 engine = matlink.engOpen();
 ...
 runner = new MatlabRunner();
 runner.start();
 }
 ...
 private class MatlabRunner extends Thread {
 ...
 }
}

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

Fig. 3. Abbreviated Java code to write data (in the form of a

struct) to the MATLAB workspace and then call an interpreted
MATLAB function using the data struct.

Data are written to the MATLAB workspace and a
formatted field struct is constructed using the
engPutVariable and engEvalString methods from the
JMatLink class library.

Abbreviated Java code that builds a MATLAB data
struct (sensorData) and then calls an interpreted
MATLAB function (mFunction) with the struct as an
argument is shown in Fig. 3.

The code in Fig. 3 would generally be used within a
thread runner method of the MatlabRunner class of Fig. 2.
Note that mFunction will be some function written in
MATLAB script and sensorData and result are both
MATLAB variables existing within the workspace.
Results are read from the MATLAB workspace back into
Java variables using the JMatLink method
engPutVariable.

Fig. 4 shows the forms of support for MATLAB within
the larger architecture. Development phase and production
phase support are provided.

At the production level, for fully developed services,
MATLAB is supported at the driver module
implementation level discussed in the previous section. It
can be used as the native server implementation of a
service. The associated server and proxy handle the remote
overhead and interaction with other services. On the left of
Fig. 4 within the Distributed SFX block a native service
implemented in MATLAB is shown. Note that many
languages are supported for implementation of services and
most services are currently implemented in Java. The
purpose of the figure is to illustrate the two forms in which
MATLAB is used in the system.

The MATLAB workspace on the right of Fig. 4 shows
MATLAB’s relationship to the larger architecture when it
is being used for research and module development. This
is considered the development phase. In this form,
MATLAB is used as a research tool in addition to being
used for standard service module development and is not
strictly constrained by the overall Distributed SFX
architectural paradigm.

Jmatlink
native JMatlink

Write Data to MATLAB
(Sensors readings,

Percepts)

Read Data From MATLAB
(Actuator Commands,

Processed Data)

MATLAB Module

MATLAB Module

MATLAB Module
(Developed Service

Implementation)

MATLAB Workspace

Control Loop
Body

MATLAB Module

Java/Jini

Research Experimentation and
Module Development Tool

Distributed SFX

Production Phase Development Phase

Completed service
implementation

(interaction with the larger
Distributed SFX architecture,

see Fig. 1)

Fig. 4. Data flow diagram illustrating the relationship between
MATLAB and the larger distributed Java/Jini based architecture.

For research and development, a full MATLAB workspace is
supported in the development phase (Development Phase). In

the production phase, fully developed modules are seen as local
service implementations within Distributed SFX (Production

Phase).

In summary, the architecture supports research from its
primary synthesis, to its mature implementation within a
structured paradigm. The architecture supports uniformity,
compatibility and integration of high level AI elements and
low level mathematical control-theoretic elements. In
addition, the architecture supports low level research
experimentation without sacrificing the integrity of the
larger structured distributed robotics behavior based
paradigm.

IV. ROBOTS AND HARDWARE
The Distributed SFX architecture including integrated

MATLAB support has been implemented on mobile robots
and computer workstations. The architecture’s
functionality is demonstrated using a system consisting of
one robot operating outdoors and one computer
workstation located inside the laboratory.

Distributed SFX has been implemented on iRobot
ATRV-JR ground robots. These robots have been
equipped with a versatile array of sensors including
scanning planar lasers, FLIR heat imaging video, standard
video, GPS and inertial gyroscopes. In addition, the robots
have wheel odometers supplied by the manufacturer and
managed by iRobot’s Mobility software.

...
matlink.engPutVariable(engine, “laserData” ,

laserData.readLaser);
matlink.engPutVariable(engine, “gpsData”, gps.readGps);

matlink.engEvalString(engine, “sensorData. laserData =
 laserData”);
matlink.engEvalString(engine, “sensorData.gpsData =

gpsData”);

matlink.engEvalString(engine, “result =

mFunction(sensorData.”);

resultData = engGetVariable(engine, “result”);
....

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

(a)

(b)

Fig. 5. An ATRV-JR robot (a) in the CRASAR robotics lab and
(b) outside on the USF campus near the CRASAR robotics lab.

The ATRV-JR ground robots have PCs with 1GHz PIII
processors and 2Gb ram. The onboard computers include
auxiliary 10 serial port cards, firewire and UBS to
accommodate sensors and other equipment. The robots
were originally supplied with Linux RedHat 7.x from
iRobot but have been upgraded to Linux 9.x. The robots
are capable of running locally any software that will run on
a standard PC and are accessible via wireless Ethernet
(802.11g). Photos of the CRASAR ATRV-JR robots are
shown in Fig. 5.

The ATRV-JR in Fig. 5 (a) is shown with a SICK
scanning planar laser mounted on the front of the vehicle, a
pan/tilt unit with FLIR and standard video cameras
attached to the front-top equipment rack, and inertial
gyroscope and GPS mounted on the center-top equipment
rack.

The experiments present in this paper rely on GPS and
odometry. The GPS system used is a Synergy Systems
LLC M12+ with evaluation board and a HAWK GPS
antenna connected via serial link to the robot’s main
computer. The device uses proprietary filters and error
estimation algorithms. Both filtered and unfiltered
readings are available to the robots.

V. RESULTS
Here we report on testing of robots in an outdoor

environment using the architecture described above.
Experiments to test and quantify GPS and odometer
accuracy were performed in outdoor conditions. GPS, and
odometer errors were measured over the course of several
benchmark test driving patterns, and under varying
conditions.

The tests were conducted by setting up and executing
automated test sequences. The distributed architecture
operated on a system including a robot in the field and a
computer workstation in the lab. The experiments made
use of MATLAB as supported in development mode as
illustrated in Fig. 4 in section III above. The Distributed
SFX architecture managed all the sensor and actuator
services as distributed objects. MATLAB, was used to
implement the automated test services on the robot, and to
process and correlate test data within the larger Java/Jini
based distributed architecture. The larger Distributed SFX
architecture also managed the tests at a high level including
maintenance of distributed objects and services between
the lab computer workstation and the robot.

A. GPS based navigation
The example tests conducted here serve both to

demonstrate the functionality of the Distributed SFX
architecture and to lay the groundwork for outdoor
navigation with mobile robots using GPS. In order to
provide a context and motivation for the experiments, a
short review of the use of GPS and odometry for
positioning and navigation in mobile robots follows.

Several references can be found in the literature that
discuss testing and performance of GPS receivers in mobile
robots. In [13], issues concerning the use of GPS for
controlling and navigating an autonomous vehicle are
addressed. In that work, several experiments were
conducted to measure the accuracy of GPS and the
availability of satellite fix for 3D GPS. In [14] the use of a
differential GPS (DGPS) is proposed for positioning in a
single mobile robot. In that work, limitations and
variability in accuracy as functions of number and location
of satellites are studied, as well as the affects of choice of
the satellite to be used and the offset of the receiver’s
location.

In unstructured outdoor environments, Fused GPS and
wheel odometry data have been proposed for use in
absolute positioning of mobile robots. For example, in
[15] the authors propose a method for reducing errors in
differential GPS measurements by incorporating
information from robot position odometry. In that work,
the authors present experimental results validating their
approach. In [16] another approach for outdoor navigation
using GPS data and odometry is presented. Their
methodology for vehicle navigating is based on the
construction of covariance matrices for automatic
localization computations that include the number, and
location of, visible satellites as factors. The matrices are
built and maintained by sampling GPS data along a route
and continuously updating the matrices to accommodate
drift in GPS data quality.

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

In order to provide a baseline level of performance for
the methods described above, and to improve the use of
GPS and odometry for navigation it is beneficial to
accurately measure relative and absolute GPS and
odometry position error. The experiments reported on in
this section provide a quantification of such errors.

B. Test Patterns
During these tests, the robot automatically followed

predetermined test patterns. These included forward and
backward motion along a straight line, tracing a rectangle,
and tracing a circle. The controller service modules for
each of these test patterns produced predetermined timed
sequences of movements and recorded all sensor and
actuator related data over the course of each test.

C. Data Collection and Coordinate frames
Data were recorded at each controller time step during

each test-pattern driving session. Data included GPS
readings, actuator commands, odometry generated position,
time stamp and other sensor readings (such as Laser range
values). For the test conditions used here, full control loop
cycles required about 0.2 seconds to complete so data were
collected at a rate of approximately 5 Hz.

In order to relate the data collected during robot
driving, several coordinate frames of reference must be
kept track of. These include the robot body-attached frame
of reference, the robot’s internal world frame of reference,
and the real world frame or reference. Although these
frames are technically 3 dimensional, we consider only the
x and y-axis of each frame since these tests were conducted
under very nearly planar conditions (mixed dirt and grass
flat terrain).

The real world coordinate frame of reference is defined
here to have its origin at the initial position of the robot at
the start of a driving session, and to be oriented so that the
positive x-axis points toward the East and the positive y-
axis points toward the North. GPS data are converted to
meters and related to this coordinate frame.

The robot’s internal world frame is used to record and
maintain position and orientation calculated from
odometry. The robot internal reference frame deviates
from the real world by the cumulative error generated by
the odometry system.

The robot body-attached frame of reference is defined
with its origin at the center of the robot and its x-axis
pointed in the forward facing direction of the robot. The
robot is initializes at the beginning of each driving session
so that its body-attached frame is coincident with its
internal world frame.

Fig. 6. GPS points and points calculated from odometry for an

example linear test pattern.

Fig. 7. GPS points and points calculated from odometry for a

rectangular test pattern.

Fig. 8. GPS points and points calculated from odometry and for

an example of the circular test pattern.

-10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

 Start

West --- East (m)

S
ou

th
 -

--
 N

or
th

 (m
)

Odometry
Filtered GPS
Unfiltered GPS

Linear Test Pattern

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-12

-10

-8

-6

-4

-2

0

2

4

6

8

 Start

West --- East (m)

S
ou

th
 -

--
 N

or
th

 (m
)

Rectangular Test Pattern
Odometry
Filtered GPS
Unfiltered GPS

-30 -25 -20 -15 -10 -5 0 5 10 15 20
-30

-25

-20

-15

-10

-5

0

5

10

 Start

West --- East (m)

S
ou

th
 -

--
 N

or
th

 (m
)

Circular Test Pattern
Odometry
Filtered GPS
Unfiltered GPS

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

D. GPS and Odometry Results
For each of the test patterns, the robots were driven 5

times (for a total of 15 runs). Each test was initiated
remotely from a computer workstation in the lab using the
distributed architecture.

Within the MATLAB-based test service, data were
collected, stored, and processed. At each iteration of
control (time step), the following data were collected: GPS
lock status, filtered GPS latitude and longitude coordinates,
unfiltered GPS latitude and longitude coordinates,
incremental x and y positions based on odometry, linear
and rotational velocity based on odometry and all
calculated actuator control commands. These data were
used to reconstruct the robot’s sensor history and internal
record of position history.

Figures 6, 7 and 8 show GPS and wheel odometry
position data collected on the linear, rectangular, and
circular test patterns respectively. Each panel shows data
collected over a single example run of each test pattern.

The paths taken by the robots during tests (as judged by
GPS and odometry position measurement methods) are
shown as sequences of points. All data have been
converted to meters (m) and oriented as they would be in a
standard map. During each run, the origin was set to be the
starting point of the robot. In all three cases the positions
calculate from odometry and positions measured from GPS
deviate from one another over the courses of the tests. In
the rectangular and circular tests, odometry positions and
GPS positions deviate by approximately 2.0 meters and 6.0
meters on average respectively. This is to be expected
because odometry errors are cumulative and thus
influenced by the size and duration of the test patterns.
The rectangular test used a square with 10 meter sides as
compared to the much lager circular test patter which used
a circle with a 25 meter radius. Below, we consider
absolute GPS and odometry errors.

In order to quantify GPS and odometry errors, with
respect to the real world coordinate frame of reference, the
robots were driven along a linear course with known
intermediate points.

The cumulative linear odometry error was found to be
0.4% (1/5 of one percent) per meter traveled. Errors were
averaged over 6 runs of traveling forward and back along a
course of 14.8 meters over dirt and grass.

Filtered GPS position error was calculated as the
average difference between each GPS reading and the
robot’s true position at the time of reading. The robot was
driven along a known linear path similar to the one shown
in Fig. 6. A total of 5 tests were conducted on 3 different
days. The average GPS position error was found to be 0.91
(m) with a standard deviation of error of 0.52 (m) over all
of the test runs. Note that a total of approximately 2400
data points were used to generate the average error. This
actual position error is somewhat lower than, but consistent
with estimated position errors reported in [13].

VI. CONCLUSION
In this paper a novel form of integration of MATLAB

into a distributed behavioral robotics control architecture
was presented. The architecture supports advanced robot
control research both at the AI level and at the control-
theoretic level. It is implemented in Java and uses Jini to
manage distributed objects and services between robots and
computers. The JMatLink Java library was used to
incorporate MATLAB into the Distributed SFX
architecture. MATLAB within the architecture and servers
the dual purposes of providing a versatile robot
experimentation tool, and as a rapid module and service
implementation tool. Although modules and services can
be implemented in many native languages, the ability to
use interpreted MATLAB code is beneficial because it
allows the efficient and direct transfer of research and
development results generated in MATLAB into functional
service implementations within the paradigm of the
distributed behavioral architecture.

The architecture was used to conduct automated
experiments to quantify GPS and odometry position errors
in mobile robots in an outdoor environment. During the
experiments all data collection, robot sensor and actuator
services and higher level components were managed by the
architecture as distributed objects existing on a system
consisting of one robot in the field and an additional
computer workstation in the lab. These results show the
versatility of the architecture and lay the ground work for
GPS and odometry based positioning control for the
ATRV-JR mobile robot platforms used here.

ACKNOWLEDGMENTS
This work was partially supported by a grant form

ONR, N 000 14-03-1-786 (2132-033-LO). L. Doitsidis
was partially supported by “IRAKLITOS fellowships for
research from the Technical University of Crete, EPEAEK
II – 88727

REFERENCES

[1] R. R. Murphy, Introduction to AI Robotics, The MIT Press,
Massachusetts, 2000.

[2] S. Müller, H. Waller, “Efficient Integration of Real-Time
Hardware and Web Based Services Into MATLAB,” ESS'99
11th European Simulation Symposium and Exhibition,
Erlangen-Nuremberg, 1999, ESS'99, Oct. 26-28, 1999.
JMatLink download site: http://www.held-
mueller.de/JMatLink/

[3] A. D. Mali, “On the Behavior-based Architectures of
Autonomous Agency,” IEEE transactions on Systems, Man
and Cybernetics, Part C: Applications and Reviews, vol. 32,
no. 3, August 2002, pp. 231-242.

[4] L. E. Parker, “ALLIANCE: An Architecture for Fault
Tolerant Multi-Robot Cooperation,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 2, pp. 220-240, 1998.

[5] M. T. Long, R. R. Murphy, L. E. Parker, “Distributed multi-
agent diagnosis and recovery from sensor failures,”
Intelligent Robots and Systems, 2003 (IROS 2003),

http://www.held-mueller.de/JMatLink/
http://www.held-mueller.de/JMatLink/

A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R. Murphy, “Incorporation of MATLAB into a Distributed Behavioral Robotics Architecture,” Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), Sept. 28 - Oct. 2, 2004, Sendai, Japan.

Proceedings of the 2003 IEEE/RSJ International Conference
on, vol. 3, Oct. 29-Nov 3, 2003, pp. 2506-2513.

[6] M. Mataric, “Behavior-based robotics as a tool for synthesis
of artificial behavior and analysis of natural behavior,”
Trends in Cognitive Science, vol. 2, no. 3, pp. 82-86, 1998.

[7] A. L. Nelson, E. Grant, T.C. Henderson, “Evolution of neural
controllers for competitive game playing with teams of
mobile robots,” Journal of Robotics and Autonomous
Systems, vol. 46, no. 3, pp. 135-150, Mar 2004.

[8] G. J. Barlow, T. C. Henderson, A L. Nelson, E. Grant,
“Dynamic Leadership Protocol for S-nets,” Proceedings of
the 2004 IEEE International Conference on Robotics and
Automation (ICRA), Apr. 26 - May 1, 2004, New Orleans,
pp. 1091-1096.

[9] B. P. Gerkey, R. T. Vaughan, K. Stoy, A. Howard, G. S.
Sukhatme, M. J. Mataric, “Most Valuable Player: A Robot
Device Server for Distributed Control,” Intelligent Robots
and Systems, 2003 (IROS 2003), Proceedings of the 2003
IEEE/RSJ International Conference on, vol. 3, Oct. 29-Nov
3, 2001, pp. 1226-1231.

[10] R. R. Murphy, R. C. Arkin, “Sfx: An Architecture For
Action-oriented Sensor Fusion”, Intelligent Robots and
Systems, Proceedings of the 1992 IEEE/RSJ International
Conference on , vol. 2, July 7-10, 1992, pp.1079-1086.

[11] N. N. Okello, D. Tang, D. W. McMichael,, “TRACKER: a
sensor fusion simulator for generalised tracking,”
Information, Decision and Control, 1999, IDC 99,
Proceedings, 1999, Feb. 8-10,1999, pp. 359-364.

[12] J. Contreras, A. Losi, M. Russo, “JAVA/MATLAB
simulator for power exchange markets”, Power Industry
Computer Applications, 2001, PICA 2001. Innovative
Computing for Power - Electric Energy Meets the Market.
22nd IEEE Power Engineering Society International
Conference on, May 20-24, 2001, pp. 106-111.

[13] S. Panzieri, F. Pascucci, G. Ulivi, “An Outdoor Navigation
System Using GPS and Inertial Platform”, IEEE/ASME
Transactions on Mechatronics, vol. 7, no. 2, pp. 134-142,
June 2002.

[14] R. Willgoss, V. Rosenfeld, J. Billingsley, “High precision
GPS guidance of mobile robots,” Proceedings of the
Australasian Conference in Robotics and Automation, 2003.

[15] K. Ohno, T. Tsubouchi, B. Shigematsu, S. Maeyama, S.
Yuta, “Outdoor Navigation of a Mobile Robot Between
Buildings based on DGPS and Odometry Data Fusion,”
Robotics and Automation, 2003 (ICRA), Proceedings of the
IEEE International Conference on, vol. 2, Sept. 2003, pp.
1978-1984.

[16] R. Thrapp, C. Westbrook, D. Subramanian, “Robust
Localization algorithms for an autonomous campus tour
guide,” Robotics and Automation, 2001 (ICRA), Proceedings
of the IEEE International Conference on, vol. 2, 2001, pp.
2065-2071.

[17] L. Doitsidis, K. P. Valavanis, N. C. Tsourveloudis, Fuzzy
logic based autonomous skid steering vehicle navigation,
Robotics and Automation, Proceedings of the 2002 IEEE
International Conference on Robotics and Automation (ICRA
'02), vol. 2 , 11-15 May 2002, pp. 2171 - 2177.

http://crim.ece.ncsu.edu/assets/publications/journal/nelson2004-ras2/nelson2004-ras2.pdf
http://crim.ece.ncsu.edu/assets/publications/journal/nelson2004-ras2/nelson2004-ras2.pdf
http://crim.ece.ncsu.edu/assets/publications/journal/nelson2004-ras2/nelson2004-ras2.pdf
http://crim.ece.ncsu.edu/assets/publications/conference/barlow2004-icra/barlow2004-icra.pdf

	Introduction
	Robot Control Architectures
	The Research Architecture
	Distributed SFX
	MATLAB Support

	Robots and Hardware
	Results
	GPS based navigation
	Test Patterns
	Data Collection and Coordinate frames
	GPS and Odometry Results

	Conclusion
	Acknowledgments
	References

