
A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

Developing Evolutionary Neural Controllers for
Teams of Mobile Robots Playing a Complex

Game
Andrew L. Nelson, Edward Grant, and Gordon Lee

Abstract—This research develops methods of automating the

production of behavioral robotics controllers. Population-based
artificial evolution was employed to train neural network-based
controllers to play a robotic version of the team game Capture the
Flag. The robot agents used processed video data for sensing
their environment. To accommodate the 35 to 150 sensor inputs
required, large neural networks of arbitrary connectivity and
structure were evolved. An intra-population competitive genetic
algorithm was used and selection at each generation was based
on whether the different controllers won or lost games over the
course of a tournament. This paper focuses on the evolutionary
neural controller architecture. Evolved controllers were tested in
a series of competitive games and transferred to real robots for
physical verification.

Index Terms—Evolutionary robotics, Robot colonies, Neural
networks, Evolutionary neural computing, Behavioral robotics

I. INTRODUCTION
HE fundamental goal of evolutionary robotics (ER) is to
apply evolutionary computing methods to automate the
production of complex behavioral robotic controllers.

Many proof-of-concept experiments reported on in the
literature used computer-based simulations only [1]-[3].
Examples of ER applied to real robots include the evolution of
walking behaviors in hexapod and octopod robots [4][5], and
the evolution of simple behavioral controllers for small mobile
robots in closed environments [6][7]. These include the
development of phototaxis behaviors [8][9] and of object
avoidance and navigation in small robots using differential
steering [7][10].

The work described in this paper attempts to move ER
research beyond the nascent proof-of-concept stage. The
experiments presented in this paper show that it is possible to
evolve moderately complex mobile robot controllers using
competitive tournament-selection methods.

The field of evolutionary robotics has been reviewed in
recent publications [10]-[13]. Important issues raised in this
literature include 1) the application of ER methods to more

A. L. Nelson and E. Grant are with the Center for Robotics and Intelligent
Machines, Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, NC 27695-7911, alnelson@ieee.org,
egrant@ncsu.edu.

G. Lee is with the Department of Electrical and Computer Engineering,
San Diego State University, 5500 Campanile Drive, San Diego, CA 92182,
glee@kahuna.sdsu.edu.

sophisticated problems; 2) methods of performance and fitness
evaluation; 3) embodied evolution in real robots vs. evolution
in simulation; and 4) the coupling of simulation to reality. In
this work we will focus mainly on the first issue.

The evolution of robot controllers requires formulation of a
fitness selection function. Most commonly, a task specific
fitness selection function is formulated by hand and by trial
and error. For complex behaviors, this can require in-depth
knowledge of the dynamics of the behavior to be evolved.
One method used to address the problem of evolution of more
complex behaviors is incremental evolution [3][4][10][14].
Direct evaluation by humans has also been used in some ER
work [10][15][16]. However, all of these methods limit the
automation aspect that is central to ER.

Many games requiring high levels of skill can be scored in
a tournament using relatively simple and deterministic metrics
(measures), e.g., Checkers-Playing neural networks [17] and
Go-Playing neural networks [18]. In cases where at least one
team or player of an evolving population achieves a win in a
tournament, metric complexity can be reduced further to best
number of games won in a tournament.

In this research, populations of robot controllers were
evolved to play a robot version of the competitive team game
Capture the Flag. In this game, there are two teams of mobile
robots and two stationary goal objects. All robots on team one
and one of the goals are of one color (red). The other team
members and their goal are another color (green). In the
game, robots of each team must try to approach the other
team’s goal object while protecting their own goal. The robot
which first comes within a range of its opponent’s goal wins
the game for its team. The game is played in maze worlds of
varying configurations.

An advanced evolutionary robotics research testbed was
used in this research. The components of this testbed are: (1)
an evolutionary artificial neural network application; (2) a
colony of robots that use vision-based range finding sensor
systems; and (3) a simulation and evolutionary training
environment. We focus in detail on the neural network and
genetic algorithm formulations. The physical robot systems
are described in [19] and [20].

T

mailto:alnelson@ieee.org
mailto:egrant@ncsu.edu
mailto:glee@kahuna.sdsu.edu

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

1
0

0

0

0

0

-0.4
0

-0.3
0

-0.1
-0.4
-0.5

0

0.2
-0.1

0

1
0

0

0

-0.1
0.1

0
0.2

0

-0.4
0

0

-0.2
0

-0.5

0

0

1
0

0

-0.2
-0.4
0.5

0

-0.2
0.2
0.1

0

0.4
0

0.2

0

0

0

1
0

0

-0.1
0

-0.3
0

0.2
0

-0.2
0.4

-0.4
-0.1

0

0

0

0

1
-0.4
0.4

0
-0.1

0

-0.4
0

-0.5
0

0

0

0

0

0

0

0

0

-0.3
0
0

0

-0.3
0.1

-0.3
0.1

-0.3
0.4

0

0

0

0

0

0

0

0
0

0

0

-0.2
0.3

0

0

-0.3

0

0

0

0

0

-0.4
0

0
0

-0.2
-0.1

0

-0.1
0.1

-0.2
0

0

0

0

0

0

0

0

0
0

0

0.3
-0.1

0

0.5
0

0

0

0

0

0

0

-0.5
0

0
0

0

0.1
0.1
0.2

0

-0.1
0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

-0.5
0

0

0

0

0

0

-0.1
0

0
0

0

0

0

0.2
0.3
0.4

-0.2

0

0

0

0

0

0

0

0
0.4

0

0

0

0

0

0.4
-0.4

0

0

0

0

0

0

0

0
0.3

0

0.5
0

0

0

-0.4
-0.4

0

0

0

0

0

0

0

0
0

0

0

0

0

0.2
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0.2
-0.4

0

0

0

0

0

0

0

-0.5
0.1

0
-0.3
-0.2
-0.3
-0.2
0.3
0.4
0.3
0.4

in1

in1 in1 type = lin

in2

in2 in2 type = lin

in3

in3 in3 type = lin

in4

in4 in4 type = lin

in5

in5 in5 type = lin

hid1

hid1 Hid1 type = rbf

hid2

hid2 Hid2 type = sdl

hid3

hid3 Hid3 type = rbf

hid4

hid4 Hid4 type = rdl

hid5

hid5 Hid5 type = sdl

hid6

hid6 Hid6 type = sig

hid7

hid7 Hid7 type = sdl

hid8

hid8 Hid8 type = rbf

hid9

hid9 Hid9 type = rbf

out1

out1 Out1 type = lin

out2

out2 Out2 type = linbias

W N

1
23

4

5

6

7 8

9

10

11

in 1

in 2

in 3

in 4

in 5

out 1

out 2

1
23

4

5

6

7 8

9

10

11

(a) (b)
Fig. 1. An example neural network encoding. Panel (a) shows the weight and connectivity matrix W, and the neuron type vector N. Panel (b)

shows the corresponding network graphical representation with inputs on the left and outputs on the right.

II. THE EVOLUTIONARY NEURAL NETWORK
Much of the ER work to date used very simple network
topologies and restricted weight values [7][9][21][22]. Such
restrictions limit the scalability of the methods studied. Other
researchers have used more complex networks [5][10][23] and
we pursue this path. We have developed a generalized class
of network structures. These networks contain: (1) feed
forward and feedback connections, (2) mixed types of
neurons, and (3) variable integer time delays on neuron inputs.
Neuron activation function types include sigmoid, linear, step-
threshold, and Gaussian radial basis functions.

The connectivity and weighting relationships are contained
in a single two-dimensional matrix W. Information specifying
neuron types are stored in a vector structure N, with one
formatted field per neuron. Fig. 1 shows an example network
encoding. W and N are shown in panel (a) and the resulting
network graphical representation is shown in panel (b). In the
graphical representation, only nonzero weights are shown (as
weighted lines). Neuron location is a function of connectivity.
Note that the example network of Fig. 1 is much smaller than
the typical network evolved in this work. The example
network is included to illustrate network representation.

This network representation is designed to facilitate the
evolution of populations of variable-size and arbitrarily
connected networks. In particular, neurons can be added or
removed without altering the connectivity relationships of
other neurons in the network by inserting (or deleting) the
appropriate row and column of W, and row of N.

Current and past network inputs and neuron functional
levels (outputs) are stored in an ordered matrix, I. The
maximum level of time delay is a scalar integer, δ. Neuron
activation functions take the form:

)))(,(,()(ntfuf nnn τiw= (1)

where }..1{ Nn ∈ , wn is the nth row of the weight matrix W,
i(t,τ(n)) is the τth row (1≤τ≤δ) of the input/activation matrix I
at time t, and fn is the activation function type specified in the
nth field of N. The integer valued time delay, τ(n) is also
defined in the nth field of N and is written as a function of n.
In most cases, the argument of the neuron activation function,
u, takes the form of the sum of the weight inputs (dot
product),

∑
+

=

=
1

1

N

m
mmiwu (2)

For the radial basis activation functions, u is the Euclidian

distance between w and i in n-space.
Network inputs are considered to be linear neurons while

function outputs can be selected and read from the matrix I
after a network updating cycle. The network input-output
relationship is:

))(()1(WN,,II tNetworkt =+ (3)

and
)11(,t +⊂ io (4)

where o is a vector of values from specified output neurons
and is a sub-set of i, the first row of the new I(t+1). Initially,
the network inputs are read into the first elements of the first
row vector of I(t). I(t) is given in expanded form below.

 []

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+ ′ + + ′

= +

++

) 1 , (

) 2 , (
) 1 , (

))(,1(, ()),... 1 (, 1 (,(,,...

)1(

111

δ

τ τ

t

t
t

Ntf L tfii

t

N N LLL

i

i
i

i w iw

I

M

 (5)

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

The functional Network of Equation (3) calculates the

outputs of each neuron specified in N in order, placing
resulting values in successive elements of I.

A fully evolved controller network is shown in Fig. 2. The
network uses 150 inputs to accommodate processed video
sensor information and produces two drive wheel command
outputs that control the robot’s differential-steering wheel
motors. The details of the neural evolution process are
discussed in section IV.

Fig. 2. A fully evolved controller neural network.

III. THE REAL ROBOTS AND THE SIMULATION ENVIRONMENT
Evolution of the neural controllers is performed in a

simulated environment, one that is coupled to a real robot
environment for testing and verification. The physical robots
and the simulation environment have been described in
[19][20] and [24], respectively and will be only briefly
discussed in this section.

Fig. 3. EvBot robots fitted with colored shells.

The physical robots used in this work are the EvBots

[19][20]. These robots use vision base range-finding sensors
for detection of their environment [24]. The robots are fully
autonomous and are capable of performing all vision
processing and control computation on board. Evolved neural
networks are transferred to the real robots for testing. Fig. 3
shows a photograph of two EvBots. Each robot is fitted with
a colored shell. The shells are used in the Capture the Flag
game behavior and serve to differentiate robots on different
teams.

In the simulation environment, robot agents, sensors,
robot-environment and robot-robot interactions are modeled.
Simulated sensors extract range data from the environment
and format them into the same format reported by real video
range sensors used on the physical robots [25].

Fig. 4 shows two screen captures form the simulation
environment.

(a) (b)

Fig. 4. Graphical representation of the simulation environment. In
(a) the robots are shown clustered around their respective goal
objects. In (b) the simulated range sensor data received by the robot
in the bottom left-hand corner is displayed as the pie-piece shaped
graphic superimposed on the environment.

IV. FITNESS SELECTION AND THE EVOLUTIONARY ALGORITHM
In this section the fitness selection metric and evolutionary

algorithm used to evolve populations of neural network-based
robot controllers is discussed.

The process of controller evolution consists of a repeating
cycle of several steps. This cycle is roughly analogous to a
generation in a natural evolutionary process. During the
cycle, individual neural controllers in a larger population of
neural controllers (P∈p) perform a task or engage in a
performance period. For the game-playing behavior, this
performance period consists of a tournament of competitive
games involving all the members of the population.
Following this, each neural controller’s performance is
evaluated based on a fitness selection metric F(p). In the final
step of the cycle, a genetic algorithm (GA) is applied. The
GA uses information from the fitness selection function to
select and propagate the fittest individuals in the current
population to the next generation population. During
propagation, controller networks are altered slightly using

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

stochastic genetic operators
(mutation) to produce offspring that make up the next
generation of controllers. This cycle is repeated for many
generations to produce populations of functional robot
controllers. This process can be considered as a form of
machine learning or neural network training.

A. Fitness selection function specification
Fitness for individual controllers is based on their

performance in competition in tournaments of games. During
each generation, a single tournament of games was played. A
bimodal training fitness selection function was used. The
selection function has an initial mode that accommodates sub-
minimally competent seed populations and a second mode that
selects for aggregate fitness based only on overall success or
failure (winning or losing games). Additionally, this selection
metric was applied in a relative competitive form in which
controllers in an evolving population compete against one
another to complete their task - to win the competitive game.

Fitness F(p) of an individual p in an evolving population P
() takes the general form: P∈p

)()()(2mode_1mode_ pFpFpF ⊕= (6)

where Fmode_1 is the initial minimal-competence mode and
Fmode_2 is the purely success/failure based mode. Here ⊕
indicates dependant exclusive-or: if the success/failure based
mode’s value is non-zero, it is used and any value from Fmode_1
is discarded. Otherwise fitness is based on the output of
Fmode_1. Fmode_1 is formulated to return negative values and
returns 0 when maximized or if Fmode_2 is active. Fmode_2 in
contrast returns positive values based on number of game-
wins, if any.

The first mode of the fitness function selects for minimal
competence to successfully complete the task (however
poorly) in a detectable fraction of the trials, and in a finite
amount of time. In essence, the mode selects for the ability to
travel a distance D through the competition environment. The
general form of mode 1 is as follows:

msFF dist −−=mode_1 (7)

where Fdist calculates a penalty proportional to the difference
between distance d travel by the best robot on a team, and the
minimal competence distance D:

⎭
⎬
⎫

⎩
⎨
⎧ <−−

=
otherwize 0

 if)(* DddD
Fdist

α (8)

D is defined as half the length of the training environment’s
greatest dimension and α is a constant of proportionality. In
Equation (7), s and m are penalty constants applied in the case
that robots on a team becoming immobilized or stuck (by any

means), and, in the case of controllers, producing actuator
output commands that exceed the range of the actuators (the
wheel motors) respectively.

The second mode of the fitness function Fmode_2 is classified
as aggregate because it produces fitness based only on success
or failure of the controllers to complete the task at hand
(competitive team game playing). The formulation of the
success/failure mode (Fmode_2) of the fitness function is
determined by the competitive nature of the training algorithm
and the behavioral task. Here, competitive games were
played, so success or failure was determined by winning or
losing games. In each generation, a tournament of games
involving all the individuals in the population was conducted.
Each individual played two games against one other member
of the population (the opponent). Note that the opponent was
selected at random from the population at the beginning of
each tournament. The possible outcomes of these games
incurred different levels of fitness and are summarized in Tab.
1 below.

Table 1. Fitness points awarded by the aggregate success/failure
mode Fmode_2, for pairs of reciprocal games during a generational

tournament.
Game Pair
Outcomes

Fitness Points
Awarded

win-win 3
win-draw 1
win-lose .5
no win 0 (Fmode_1 dominates)

Note that in cases where no win occurs Fmode_1 is used to

determine a negative fitness value.

B. The GA and neural network mutation
After a tournament of games (one generation), controller

population members p were scored relative to each other using
the performance metric F(p) defined in Equation (6). The
population P is always ordered from fittest to least fit before
propagation to the next generation.

A very simple selection and replacement genetic algorithm
(GA) was used. Offspring are generated using mutation only.
During the propagation phase of the GA, the fittest 50% of the
population produce offspring that replace the least-fit 50% of
the population. An important ramification of this is that in the
case that 50% or more of the population receives a positive
fitness value, then selection will be based entirely on
success/failure information and the minimal competence mode
will have no bearing, i.e. all individuals not achieving success
will be eliminated. Ancestor-elitism was used to include the
best individual from two generations passed (slightly reduces
the percent of the wins per generation required for pure
win/lose based selection).

Network weights, neurons and connectivity are mutated
directly. The genome C is specified by the two dimensional
matrix of real numbers

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

]:[NWC ′= (9)

where W is the weight/connection matrix, and N’ is a column
vector extracted from the formatted structure N (see Fig. 1).
Mutation of a network selected for inclusion in the next
generation population is formalized by the compound relation

)))(((' CC wcs MMM= (10)

where C is the chromosome of the parent network and C’ is
the resulting mutated offspring network chromosome. Mw Mc
and Ms are genetic operators that mutate the weights, the
connections, and the neuron structure of the network
respectively.

V. RESULTS
In this section, we present results and tests of a population

of neural network-based robot controllers evolved to play the
game Capture the Flag. Training data collected over the
course of evolution of a population of controllers are
presented. Examples of game-playing behaviors of fully
evolved controllers are presented. In addition, evolved
controller performance is measured by placing the best
member of the evolved population in competition against a
knowledge-base controller of well-defined abilities.

A. Population evolution
Fig. 5 shows evolutionary training data collected over the

course of the evolution of a population of controllers. The
population was kept at a constant size of 20 individuals. The
evolution process was performed in a single maze
environment (of the configuration shown in Fig. 6). The top
panel of Fig. 5 shows fitness selection values generated by
equation (6) for the population and plotted over the course of
500 training generations. The best, mean, and poorest
controller fitness values for the evolving population are
plotted. The data indicate that the highest relative selection
value (3, due to winning two games in a generation) is not
achieved by any controller before the 50th generation. Early in
training, no controller in the evolving population is able to
win any game. During this early phase of evolution the first
mode (Fmode_1, equation (6)) of the bimodal fitness selection
function dominates selection. The lower panel of Fig. 5
shows the number of total wins achieve by the population as a
whole at each generation. This is a purely passive metric and
has no effect on selection whatsoever. It is included here to
give a measure of overall population fitness. After the 300th
generation the number of wins per generation is sufficient so
that the second purely competitive mode of the fitness
function dominates the selection process. The dashed
horizontal line on the lower panel of Fig. 5 indicates the wins-
per-generation threshold at which selection become
completely based on win/lose information.

B. Evolved controller behavior
Fig. 6 shows the results of controllers from the evolve

population competing against one another in a simulated
environment. Fig. 7 shows the evolved controllers competing
in the physical environment using teams of real robots. In
both cases, all robots used evolved neural network controllers.
The paths taken by the robots in both figures are indicated by
light (green) and dark (red) curves. In simulation, and in the
physical world, robots display qualitatively similar general
behaviors.

50 100 150 200 250 300 350 400 450

-3

-2

-1

0

1

2

3
Fitness Curves, to Generation 500

Generation

R
el

at
iv

e
Se

le
ct

io
n

Fi
tn

es
s

Best
Mean
Worst

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Generation

W
in

s
pe

r T
ou

rn
am

en
t

Fig. 5. Training and evolution data collected over the course of
evolution of a population of controllers. The top panel shows fitness
selection function values. The lower panel shows a purely passive
fitness metric: the number of total games won by the population
during each generation.

The controller simulation and physical environments are

coupled so that controllers can be transferred directly from
simulation to physical robots without and alterations. Hence,
evolved controllers can be tested in the real world, in
simulation, or in a combination of both.

Fig. 6. Simulated robot agents competing in a simulated maze

world. The light and dark curves indicate the paths taken by the

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

robots during the course of the game. The game was won be the red
(dark) team.

Red Robots
Green Robots

Green Goal

Red Goal

Fig. 7. Real robots competing in a physical environment. The light
and dark curves indicate the paths taken by the robots during the
course of the game. The game was won be the red (dark) team.

C. Evaluation of evolve controllers performance
The game sequences of Figs. 6 and 7 demonstrate that

controllers have evolved competent game-playing behaviors.
However, because a relative competitive fitness selection
metric was used to drive the evolutionary process, absolute
fitness is not known. To address this, fully evolved
controllers were compared to knowledge-based controllers of
known abilities. An extensive tournament of 240 games was
conducted in an environment similar to the one shown in Fig.
6. Each game during the tournament was initialized with a
new randomly generated set of starting position for robots and
goals. Fig. 8 shows the results of this tournament. The best-
evolved neural controller won 108 games, the knowledge-
based controller won 103 games, and 29 games were played to
a draw.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

G
am

e
W

in
s

in
 T

ou
rn

am
en

t

ANN Wins
Rule-base Wins
Draws

Fig. 8. Bar graphs displaying evolved controller and knowledge-
based controller competition data collected during a tournament of

240 randomly initialized games. Data are shown with 95%
confidence intervals.

In marked contrast to the knowledge-based controllers, the

neural network-based controllers displayed complex
trajectories that were extremely difficult to predict exactly.
Although it may be possible to qualitatively analyze the
evolved controller behaviors to a degree, such analysis is not
at all necessary to the evolutionary process. Human
knowledge was required to formulate the minimal competence
mode of the fitness function (Fmode_1, equation (6)), but this
only selected for minimal navigation abilities. The high-level
game-playing behaviors were evolved based mainly on
competitive game playing during evolution.

The main focus of this paper has been on the evolutionary
neural network architecture and evolutionary process. Further
studies related to the characterization of evolved controllers
using this platform are reported on in [24][25].

VI. CONCLUSION
In this paper, an evolutionary robotics neural network

controller architecture and training environment were
described. The networks evolved in this work are very large
in comparison to other ER work. Networks accommodate
between 35 and 150 processed video sensor inputs. Robot
controllers were evolved to play the game Capture the Flag
and were tested in a set of simulated games and in a physical
environment with real robots. Evolved neural network based
controllers were able to play competitively against a
knowledge-based controller of well-defined abilities..

REFERENCES
[1] F. Gomez, R. Miikkulainen, Incremental Evolution of Complex

General Behavior, Adaptive Behavior, Vol. 5, pp. 317-342, 1997.
[2] M. Quinn, (2000) Evolving cooperative homogeneous multi-robot

teams, Proceedings of the IEEE / RSJ International Conference on
Intelligent Robots and Systems (IROS 2000), Takamatsu Japan, vol.3,
pp. 1798 –1803, 2000.

[3] J. Kodjabachian and J.-A. Meyer, Evolution and development of neural
networks controlling locomotion, gradient-following, and obstacle
avoidance in artificial insects, IEEE Transaction on Neural Networks
9(5) (September 1998).

[4] D. Filliat, J. Kodjabachian, and J. A. Meyer, Incremental evolution of
neural controllers for navigation in a 6 1egged robot, In Sugisaka and
Tanaka, editors, Proc. of the Fourth International Symposium on
Artificial Life and Robotics. Oita Univ. Press, 1999.

[5] N. Jakobi, Running Across the Reality Gap: Octopod Locomotion
Evolved in a Minimal Simulation, Proceedings of the First European
Workshop on Evolutionary Robotics: EvoRobot’98, 1998.

[6] D. Floreano and S. Nolfi. Adaptive behavior in competing co-evolving
species. Mantra technical report, LAMI, Swiss Federal Institute of
Technology, Lausanne, 1997. Also submitted to ECAL97.

[7] D. Floreano and F. Mondada , Evolution of homing navigation in a real
mobile robot. IEEE Transactions on Systems, Man, Cybernetics Part B:
Cybernetics Vol. 26 No. 3, (1996), pp. 396-407.

[8] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The
use of simulation in evolutionary robotics. In F. Moran, A. Moreno, J.
Merelo, and P. Chacon, editors, Advances in Artificial Life: Proc. 3rd
European Conference on Artificial Life, pages 704--720. Springer-
Verlag, Lecture Notes in Artificial Intelligence 929, 1995.

A. L. Nelson, E. Grant, G. Lee, “Developing Evolutionary Neural Controllers for Teams of Mobile Robots Playing a Complex Game,” IEEE
International Conference on Information Reuse and Integration, (IRI 2003), Las Vegas NV, Oct 27-29, 2003, pp. 212 – 218.

[9] R.A. Watson, S.G. Ficici, J.B. Pollack, Embodied Evolution:
Distributing an Evolutionary Algorithm in a Population of Robots,
Robotics and Autonomous Systems, Vol. 39 No. 1, pp 1-18, Volume
39, April 2002.

[10] I. Harvey, P. Husbands, D. Cliff, A. Thompson and N. Jakobi,
Evolutionary robotics: the Sussex approach, Robotics and Autonomous
Systems, (20)2-4 (1997) pp. 205-224.

[11] M. Mataria and D. Cliff, Challenges in evolving controllers for
physical robots, Robotics and Autonomous Systems , Volume 19, Issue
1, Pages 67-83, November 1996.

[12] S Nolfi, D. Floreano, “Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines”, The MIT
Press, Cambridge Massachusetts, 2000.

[13] Floreano, D. and Urzelai, J. (2000) Evolutionary Robotics: The Next
Generation. In T. Gomi (ed.), Evolutionary Robotics III, Ontario
(Canada): AAI Books, 231-266.

[14] W. Lee, Evolving Complex Robot Behaviors. Information Sciences
121(1-2): 1-25 (1999).

[15] H. Lund, O. Miglino, L. Pagliarini, A. Billard, A. Ijspeert, Evolutionary
Robotics-A Children’s Game, Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational Intelligence, pp. 154-
158, 1998.

[16] F. Kaplan, P. Oudeyer, E. Kubinyi and A. Miklosi, Robotic clicker
training, Robotics and Autonomous Systems, Volume 38, Issues 3-4,
Pages 197-206, 2002.

[17] K. Chellapilla, D. B. Fogel, Evolving an Expert Checkers Playing
Program Without Using Human Expertise. IEEE Transactions on
Evolutionary Computation, Vol. 5, No. 4, pp. 422-428, 2001.

[18] A. Lubberts, R. Miikkulainen, Co-Evolving a Go-Playing Neural
Network, In Coevolution: Turning Algorithms upon Themselves,

Birds-of-a-Feather Workshop, Genetic and Evolutionary Computation
Conference (GECCO-2001, San Francisco), 2001.

[19] J. Galeotti, The EvBot A Small Autonomous Mobile Robot for the
Study of Evolutionary Algorithms in Distributed Robotics, MS Thesis,
North Carolina State University, 2002.

[20] J. Galeotti, S. Rhody, A. Nelson, E. Grant, and Gordon Lee, EvBots –
The Design and Construction Of A Mobile Robot Colony for
Conducting Evolutionary Robotic Experiments, Proceedings of the
ISCA 15th International Conference: Computer Applications in
Industry and Engineering (CAINE-2002), pp. 86-91, San Diego Ca,
Nov. 7-9, 2002.

[21] F. Southley, F. Karray, Approaching Evolutionary Robotics Through
Population-Based Incremental Learning, Proceedings of the 1999 IEEE
Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 710-715,
1999.

[22] S. Nolfi, Evolving non-trivial behaviors on real robots, Robotics and
Autonomous Systems, (22) 3-4 (1997) pp. 187-198.

[23] F. Gruau, Automatic definition of modular neural networks. Adaptive
Behavior, 2, pp.151-183, 1995.

[24] A.L. Nelson, E. Grant, T.C. Henderson, “Competitive relative
performance evaluation of neural controllers for competitive game
playing with teams of real mobile robots,” Measuring the Performance
and Intelligence of Systems: Proceedings of the 2002 PerMIS
Workshop, NIST Special Publication 990, Gaithersburg MD, Aug. 13-
15, 2002, pp. 43-50.

[25] A.L. Nelson, “Competitive Relative Performance and Fitness Selection
for Evolutionary Robotics", Doctoral Dissertation, North Carolina State
University, 2003.

Corresponding Author:
Andrew Nelson

E-mail: alnelson@ieee.org
Web: http://www.nelsonrobotics.org

mailto:alnelson@ieee.org
http://www.nelsonrobotics.org/

	INTRODUCTION
	The evolutionary neural network
	The real robots and the simulation environment
	Fitness selection and the evolutionary algorithm
	Fitness selection function specification
	The GA and neural network mutation

	Results
	Population evolution
	Evolved controller behavior
	Evaluation of evolve controllers performance

	Conclusion

