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Abstract—This research develops methods of automating the 

production of behavioral robotics controllers.  Population-based 
artificial evolution was employed to train neural network-based 
controllers to play a robotic version of the team game Capture the 
Flag.  The robot agents used processed video data for sensing 
their environment.  To accommodate the 35 to 150 sensor inputs 
required, large neural networks of arbitrary connectivity and 
structure were evolved.   An intra-population competitive genetic 
algorithm was used and selection at each generation was based 
on whether the different controllers won or lost games over the 
course of a tournament.  This paper focuses on the evolutionary 
neural controller architecture.  Evolved controllers were tested in 
a series of competitive games and transferred to real robots for 
physical verification. 
 

Index Terms—Evolutionary robotics, Robot colonies, Neural 
networks, Evolutionary neural computing, Behavioral robotics 

I. INTRODUCTION 
HE fundamental goal of evolutionary robotics (ER) is to 
apply evolutionary computing methods to automate the 
production of complex behavioral robotic controllers.  

Many proof-of-concept experiments reported on in the 
literature used computer-based simulations only [1]-[3].  
Examples of ER applied to real robots include the evolution of 
walking behaviors in hexapod and octopod robots [4][5], and 
the evolution of simple behavioral controllers for small mobile 
robots in closed environments [6][7].  These include the 
development of phototaxis behaviors [8][9] and of object 
avoidance and navigation in small robots using differential 
steering [7][10]. 

The work described in this paper attempts to move ER 
research beyond the nascent proof-of-concept stage.  The 
experiments presented in this paper show that it is possible to 
evolve moderately complex mobile robot controllers using 
competitive tournament-selection methods.   

The field of evolutionary robotics has been reviewed in 
recent publications [10]-[13].  Important issues raised in this 
literature include 1) the application of ER methods to more 
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sophisticated problems; 2) methods of performance and fitness 
evaluation; 3) embodied evolution in real robots vs. evolution 
in simulation; and 4) the coupling of simulation to reality.  In 
this work we will focus mainly on the first issue. 

The evolution of robot controllers requires formulation of a 
fitness selection function.  Most commonly, a task specific 
fitness selection function is formulated by hand and by trial 
and error.  For complex behaviors, this can require in-depth 
knowledge of the dynamics of the behavior to be evolved.  
One method used to address the problem of evolution of more 
complex behaviors is incremental evolution [3][4][10][14].  
Direct evaluation by humans has also been used in some ER 
work [10][15][16].  However, all of these methods limit the 
automation aspect that is central to ER.  

Many games requiring high levels of skill can be scored in 
a tournament using relatively simple and deterministic metrics 
(measures), e.g., Checkers-Playing neural networks [17] and 
Go-Playing neural networks [18].  In cases where at least one 
team or player of an evolving population achieves a win in a 
tournament, metric complexity can be reduced further to best 
number of games won in a tournament.   

In this research, populations of robot controllers were 
evolved to play a robot version of the competitive team game 
Capture the Flag.  In this game, there are two teams of mobile 
robots and two stationary goal objects.  All robots on team one 
and one of the goals are of one color (red).  The other team 
members and their goal are another color (green).  In the 
game, robots of each team must try to approach the other 
team’s goal object while protecting their own goal.  The robot 
which first comes within a range of its opponent’s goal wins 
the game for its team.  The game is played in maze worlds of 
varying configurations. 

An advanced evolutionary robotics research testbed was 
used in this research.  The components of this testbed are: (1) 
an evolutionary artificial neural network application; (2) a 
colony of robots that use vision-based range finding sensor 
systems; and (3) a simulation and evolutionary training 
environment.  We focus in detail on the neural network and 
genetic algorithm formulations.  The physical robot systems 
are described in [19] and [20].  
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(a)                                                                              (b)  
Fig. 1.  An example neural network encoding.  Panel (a) shows the weight and connectivity matrix W, and the neuron type vector N.  Panel (b) 

shows the corresponding network graphical representation with inputs on the left and outputs on the right. 
  

II. THE EVOLUTIONARY NEURAL NETWORK 
Much of the ER work to date used very simple network 
topologies and restricted weight values [7][9][21][22].  Such 
restrictions limit the scalability of the methods studied.  Other 
researchers have used more complex networks [5][10][23] and 
we pursue this path.  We have developed a  generalized class 
of network structures.  These networks contain: (1) feed 
forward and feedback connections, (2) mixed types of 
neurons, and (3) variable integer time delays on neuron inputs.  
Neuron activation function types include sigmoid, linear, step-
threshold, and Gaussian radial basis functions. 

The connectivity and weighting relationships are contained 
in a single two-dimensional matrix W.  Information specifying 
neuron types are stored in a vector structure N, with one 
formatted field per neuron.  Fig. 1 shows an example network 
encoding.  W and N are shown in panel (a) and the resulting 
network graphical representation is shown in panel (b).  In the 
graphical representation, only nonzero weights are shown (as 
weighted lines).  Neuron location is a function of connectivity.  
Note that the example network of Fig. 1 is much smaller than 
the typical network evolved in this work.  The example 
network is included to illustrate network representation. 

This network representation is designed to facilitate the 
evolution of populations of variable-size and arbitrarily 
connected networks.  In particular, neurons can be added or 
removed without altering the connectivity relationships of 
other neurons in the network by inserting (or deleting) the 
appropriate row and column of W, and row of N.   

Current and past network inputs and neuron functional 
levels (outputs) are stored in an ordered matrix, I.  The 
maximum level of time delay is a scalar integer, δ.  Neuron 
activation functions take the form: 

 
)))(,(,()( ntfuf nnn τiw=       (1) 

 

where }..1{ Nn ∈ , wn is the nth row of the weight matrix W, 
i(t,τ(n)) is the τth row (1≤τ≤δ) of the input/activation matrix I 
at time t, and fn is the activation function type specified in the 
nth field of N.  The integer valued time delay, τ(n) is also 
defined in the nth field of N and is written as a function of n.  
In most cases, the argument of the neuron activation function, 
u, takes the form of the sum of the weight inputs (dot 
product),  
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For the radial basis activation functions, u is the Euclidian 

distance between w and i in n-space.  
Network inputs are considered to be linear neurons while 

function outputs can be selected and read from the matrix I 
after a network updating cycle.  The network input-output 
relationship is: 

 
))(()1( WN,,II tNetworkt =+      (3) 

and 
)11( ,t +⊂ io         (4) 

 
where o is a vector of values from specified output neurons 
and is a sub-set of i, the first row of the new I(t+1).  Initially, 
the network inputs are read into the first elements of the first 
row vector of I(t).  I(t) is given in expanded form below.   
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The functional Network of Equation (3) calculates the 

outputs of each neuron specified in N in order, placing 
resulting values in successive elements of I.     

A fully evolved controller network is shown in Fig. 2.  The 
network uses 150 inputs to accommodate processed video 
sensor information and produces two drive wheel command 
outputs that control the robot’s differential-steering wheel 
motors.  The details of the neural evolution process are 
discussed in section IV. 

 

 
Fig. 2.  A fully evolved controller neural network. 

 

III. THE REAL ROBOTS AND THE SIMULATION ENVIRONMENT 
Evolution of the neural controllers is performed in a 

simulated environment, one that is coupled to a real robot 
environment for testing and verification.  The physical robots 
and the simulation environment have been described in 
[19][20] and [24], respectively and will be only briefly 
discussed in this section.  

 

 
Fig. 3.  EvBot robots fitted with colored shells. 

  
The physical robots used in this work are the EvBots 

[19][20].  These robots use vision base range-finding sensors 
for detection of their environment [24].  The robots are fully 
autonomous and are capable of performing all vision 
processing and control computation on board.  Evolved neural 
networks are transferred to the real robots for testing.  Fig. 3 
shows a photograph of two EvBots.  Each robot is fitted with 
a colored shell.  The shells are used in the Capture the Flag 
game behavior and serve to differentiate robots on different 
teams.  

In the simulation  environment, robot agents, sensors, 
robot-environment and robot-robot interactions are modeled.  
Simulated sensors extract range data from the environment 
and format them into the same format reported by real video 
range sensors used on the physical robots [25].   

Fig. 4 shows two screen captures form the simulation 
environment.   

 

 
(a)                                        (b) 

Fig. 4.  Graphical representation of the simulation environment.  In 
(a) the robots are shown clustered around their respective goal 
objects.  In (b) the simulated range sensor data received by the robot 
in the bottom left-hand corner is displayed as the pie-piece shaped 
graphic superimposed on the environment. 

 

IV. FITNESS SELECTION AND THE EVOLUTIONARY ALGORITHM 
In this section the fitness selection metric and evolutionary 

algorithm used to evolve populations of neural network-based 
robot controllers is discussed.  

The process of controller evolution consists of a repeating 
cycle of several steps.  This cycle is roughly analogous to a 
generation in a natural evolutionary process.  During the 
cycle, individual neural controllers in a larger population of 
neural controllers ( P∈p ) perform a task or engage in a 
performance period.  For the game-playing behavior, this 
performance period consists of a tournament of competitive 
games involving all the members of the population.  
Following this, each neural controller’s performance is 
evaluated based on a fitness selection metric F(p).  In the final 
step of the cycle, a genetic algorithm (GA) is applied.  The 
GA uses information from the fitness selection function to 
select and propagate the fittest individuals in the current 
population to the next generation population.  During 
propagation, controller networks are altered slightly using 
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stochastic genetic operators  
(mutation) to produce offspring that make up the next 
generation of controllers.  This cycle is repeated for many 
generations to produce populations of functional robot 
controllers.  This process can be considered as a form of 
machine learning or neural network training. 

A. Fitness selection function specification 
Fitness for individual controllers is based on their 

performance in competition in tournaments of games.  During 
each generation, a single tournament of games was played.  A 
bimodal training fitness selection function was used.  The 
selection function has an initial mode that accommodates sub-
minimally competent seed populations and a second mode that 
selects for aggregate fitness based only on overall success or 
failure (winning or losing games).  Additionally, this selection 
metric was applied in a relative competitive form in which 
controllers in an evolving population compete against one 
another to complete their task - to win the competitive game. 

Fitness F(p) of an individual p in an evolving population P 
( ) takes the general form: P∈p

 
)()()( 2mode_1mode_ pFpFpF ⊕=                (6) 

 
where Fmode_1 is the initial minimal-competence mode and 
Fmode_2 is the purely success/failure based mode.  Here ⊕  
indicates dependant exclusive-or: if the success/failure based 
mode’s value is non-zero, it is used and any value from Fmode_1 
is discarded.  Otherwise fitness is based on the output of 
Fmode_1.  Fmode_1 is formulated to return negative values and 
returns 0 when maximized or if Fmode_2 is active.  Fmode_2 in 
contrast returns positive values based on number of game-
wins, if any. 

The first mode of the fitness function selects for minimal 
competence to successfully complete the task (however 
poorly) in a detectable fraction of the trials, and in a finite 
amount of time.  In essence, the mode selects for the ability to 
travel a distance D through the competition environment.  The 
general form of mode 1 is as follows: 

 
msFF dist −−=mode_1            (7) 

 
where Fdist calculates a penalty proportional to the difference 
between distance d travel by the best robot on a team, and the 
minimal competence distance D: 
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D is defined as half the length of the training environment’s 
greatest dimension and α is a constant of proportionality.  In 
Equation (7), s and m are penalty constants applied in the case 
that robots on a team becoming immobilized or stuck (by any 

means), and, in the case of controllers, producing actuator 
output commands that exceed the range of the actuators (the 
wheel motors) respectively.   

The second mode of the fitness function Fmode_2 is classified 
as aggregate because it produces fitness based only on success 
or failure of the controllers to complete the task at hand 
(competitive team game playing).  The formulation of the 
success/failure mode (Fmode_2) of the fitness function is 
determined by the competitive nature of the training algorithm 
and the behavioral task.  Here, competitive games were 
played, so success or failure was determined by winning or 
losing games.  In each generation, a tournament of games 
involving all the individuals in the population was conducted.  
Each individual played two games against one other member 
of the population (the opponent).  Note that the opponent was 
selected at random from the population at the beginning of 
each tournament.  The possible outcomes of these games 
incurred different levels of fitness and are summarized in Tab. 
1 below. 

 
Table 1.  Fitness points awarded by the aggregate success/failure 
mode Fmode_2, for pairs of reciprocal games during a generational 

tournament. 
Game Pair 
Outcomes 

Fitness Points 
Awarded 

win-win 3 
win-draw 1 
win-lose .5 
no win 0  (Fmode_1 dominates) 

 
Note that in cases where no win occurs Fmode_1 is used to 

determine a negative fitness value. 

B.  The GA and neural network mutation 
After a tournament of games (one generation), controller 

population members p were scored relative to each other using 
the performance metric F(p) defined in Equation (6).  The 
population P is always ordered from fittest to least fit before 
propagation to the next generation. 

A very simple selection and replacement genetic algorithm 
(GA) was used.  Offspring are generated using mutation only. 
During the propagation phase of the GA, the fittest 50% of the 
population produce offspring that replace the least-fit 50% of 
the population.  An important ramification of this is that in the 
case that 50% or more of the population receives a positive 
fitness value, then selection will be based entirely on 
success/failure information and the minimal competence mode 
will have no bearing, i.e. all individuals not achieving success 
will be eliminated.  Ancestor-elitism was used to include the 
best individual from two generations passed (slightly reduces 
the percent of the wins per generation required for pure 
win/lose based selection).   

Network weights, neurons and connectivity are mutated 
directly.  The genome C is specified by the two dimensional 
matrix of real numbers 
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]:[ NWC ′=            (9) 

where W is the weight/connection matrix, and N’ is a column 
vector extracted from the formatted structure N (see Fig. 1).  
Mutation of a network selected for inclusion in the next 
generation population is formalized by the compound relation   

 
)))(((' CC wcs MMM=        (10) 

 
where C is the chromosome of the parent network and C’ is 
the resulting mutated offspring network chromosome.  Mw Mc 
and Ms are genetic operators that mutate the weights, the 
connections, and the neuron structure of the network 
respectively.    

V. RESULTS 
In this section, we present results and tests of a population 

of neural network-based robot controllers evolved to play the 
game Capture the Flag.  Training data collected over the 
course of evolution of a population of controllers are 
presented.  Examples of game-playing behaviors of fully 
evolved controllers are presented.  In addition, evolved 
controller performance is measured by placing the best 
member of the evolved population in competition against a 
knowledge-base controller of well-defined abilities. 

A. Population evolution 
Fig. 5 shows evolutionary training data collected over the 

course of the evolution of a population of controllers.  The 
population was kept at a constant size of 20 individuals.  The 
evolution process was performed in a single maze 
environment (of the configuration shown in Fig. 6).  The top 
panel of Fig. 5 shows fitness selection values generated by 
equation (6) for the population and plotted over the course of 
500 training generations.  The best, mean, and poorest 
controller fitness values for the evolving population are 
plotted.  The data indicate that the highest relative selection 
value (3, due to winning two games in a generation) is not 
achieved by any controller before the 50th generation.  Early in 
training, no controller in the evolving population is able to 
win any game.  During this early phase of evolution the first 
mode (Fmode_1, equation (6)) of the bimodal fitness selection 
function dominates selection.  The lower panel of Fig. 5 
shows the number of total wins achieve by the population as a 
whole at each generation.  This is a purely passive metric and 
has no effect on selection whatsoever.   It is included here to 
give a measure of overall population fitness.  After the 300th 
generation the number of wins per generation is sufficient so 
that the second purely competitive mode of the fitness 
function dominates the selection process.  The dashed 
horizontal line on the lower panel of Fig. 5 indicates the wins-
per-generation threshold at which selection become 
completely based on win/lose information. 

B. Evolved controller behavior 
Fig. 6 shows the results of controllers from the evolve 

population competing against one another in a simulated 
environment.  Fig. 7 shows the evolved controllers competing 
in the physical environment using teams of real robots.  In 
both cases, all robots used evolved neural network controllers.  
The paths taken by the robots in both figures are indicated by 
light (green) and dark (red) curves.  In simulation, and in the 
physical world, robots display qualitatively similar general 
behaviors.   
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Fig. 5.  Training and evolution data collected over the course of 
evolution of a population of controllers.  The top panel shows fitness 
selection function values.  The lower panel shows a purely passive 
fitness metric: the number of total games won by the population 
during each generation. 

 
The controller simulation and physical environments are 

coupled so that controllers can be transferred directly from 
simulation to physical robots without and alterations.  Hence, 
evolved controllers can be tested in the real world, in 
simulation, or in a combination of both.    

 

 
Fig. 6.  Simulated robot agents competing in a simulated maze 

world.  The light and dark curves indicate the paths taken by the 
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robots during the course of the game.  The game was won be the red 
(dark) team. 

 

Red Robots
Green Robots

Green Goal

Red Goal

 
Fig. 7.  Real robots competing in a physical environment.  The light 
and dark curves indicate the paths taken by the robots during the 
course of the game.  The game was won be the red (dark) team. 

 

C. Evaluation of evolve controllers performance 
The game sequences of Figs. 6 and 7 demonstrate that 

controllers have evolved competent game-playing behaviors.  
However, because a relative competitive fitness selection 
metric was used to drive the evolutionary process, absolute 
fitness is not known.  To address this, fully evolved 
controllers were compared to knowledge-based controllers of 
known abilities.  An extensive tournament of 240 games was 
conducted in an environment similar to the one shown in Fig. 
6.  Each game during the tournament was initialized with a 
new randomly generated set of starting position for robots and 
goals.  Fig. 8 shows the results of this tournament.  The best-
evolved neural controller won 108 games, the knowledge-
based controller won 103 games, and 29 games were played to 
a draw. 
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Fig. 8.  Bar graphs displaying evolved controller and knowledge-
based controller competition data collected during a tournament of 

240 randomly initialized games.  Data are shown with 95% 
confidence intervals. 

 
In marked contrast to the knowledge-based controllers, the 

neural network-based controllers displayed complex 
trajectories that were extremely difficult to predict exactly.  
Although it may be possible to qualitatively analyze the 
evolved controller behaviors to a degree, such analysis is not 
at all necessary to the evolutionary process.  Human 
knowledge was required to formulate the minimal competence 
mode of the fitness function (Fmode_1, equation (6)), but this 
only selected for minimal navigation abilities.  The high-level 
game-playing behaviors were evolved based mainly on 
competitive game playing during evolution. 

The main focus of this paper has been on the evolutionary 
neural network architecture and evolutionary process.  Further 
studies related to the characterization of evolved controllers 
using this platform are reported on in [24][25]. 

VI. CONCLUSION 
In this paper, an evolutionary robotics neural network 

controller architecture and training environment were 
described.  The networks evolved in this work are very large 
in comparison to other ER work.  Networks accommodate 
between 35 and 150 processed video sensor inputs.  Robot 
controllers were evolved to play the game Capture the Flag 
and were tested in a set of simulated games and in a physical 
environment with real robots.  Evolved neural network based 
controllers were able to play competitively against a 
knowledge-based controller of well-defined abilities..   
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