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Evolutionary Robotics (ER) is a field of research that applies evolutionary computing 

methods to the automated design and synthesis of behavioral robotics controllers.  In 

the general case, reinforcement learning (RL) using high-level task performance 

feedback is applied to the evolution of controllers for autonomous mobile robots.  

This form of RL learning is required for the evolution of complex and non-trivial 

behaviors because a direct error-feedback signal is generally not available.  Only the 

high-level behavior or task is known, not the complex sensor-motor signal mappings 

that will generate that behavior.  Most work in the field has used evolutionary neural 

computing methods.  Over the course of the preceding decade, ER research has been 

largely focused on proof-of-concept experiments.  Such work has demonstrated both 

the evolvablility of neural network controllers and the feasibility of implementation 

of those evolved controllers on real robots.  However, these proof-of-concept results 

leave important questions unanswered.  In particular, no ER work to date has shown 

that it is possible to evolve complex controllers in the general case.  The research 

described in this work addresses issues relevant to the extension of ER to generalized 

automated behavioral robotics controller synthesis.  In particular, we focus on fitness 

selection function specification.  The case is made that current methods of fitness 

selection represent the primary factor limiting the further development of ER.  We 

formulate a fitness function that accommodates the Bootstrap Problem during early 

evolution, but that limits human bias in selection later in evolution.  In addition, we 
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apply ER methods to evolve networks that have far more inputs, and are of a much 

greater complexity than those used in other ER work.  We focus on the evolution of 

robot controllers for the competitive team game Capture the Flag.  Games are played 

in a variety of maze environments.  The robots use processed video data requiring 

150 or more neural network inputs for sensing of their environment.  The evolvable 

artificial neural network (ANN) controllers are of a general variable-size architecture 

that allows for arbitrary connectivity.  Resulting evolved ANN controllers contain on 

the order of 5000 weights.  The evolved controllers are tested in competitions of 240 

games against hand-coded knowledge-based controllers.  Results show that evolved 

controllers are competitive with the knowledge-based controllers and can win a 

modest majority of games in a large tournament in a challenging world configuration. 
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CHAPTER 1.  INTRODUCTION TO DISSERTATION 
 
 
 
 
 

1.1 Research Goals And Contributions To Knowledge 

The goal of this research is to advance the sophistication of evolved embodied 

machine intelligences.  The particular focus of the work is in the field of evolutionary 

robotics (ER).  Evolutionary robotics applies evolutionary computing (EC) methods 

to evolve populations of controllers for use in robots.  In this research, artificial neural 

networks (ANN) were evolved using reinforcement learning (RL) methods to control 

autonomous mobile robots.  The work documented here represents advancements in 

the field of ER in several ways.   

 

First, the selection of controllers during the evolutionary process was driven by a 

relative competitive performance metric.  Populations of robot controllers were 

evolved to play a competitive team game.  During the process of performance fitness 

evaluation, controllers within the population competed against one another to achieve 

relative fitness scores.  The performance metric (fitness selection function, fitness 

function, or objective function) made use of two mutually exclusive selection modes.  

The first mode produced fitness values in randomly initialized populations of 

controllers.  This was necessary because initial controller populations generally had 

no detectable ability to complete the game-playing task as a whole.  The second mode 

of the performance function superceded the first and relied only on aggregate 
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competitive win/lose information.  This mode of the function allowed constraints 

from the first mode, which incorporated human bias, to be discarded in cases where a 

controller completed the overall task.  Interaction of these modes was automatically 

self-regulated and pure aggregate win/lose selection approached 100% as populations 

evolved.  In short, the selection metric addresses the Bootstrap Problem in a way that 

doesn’t permanently restrict the course of evolution with human bias. 

 

Second, robot controllers relied on processed video images for sensing of their   

environment.  These required many more network inputs than had been used in 

previous work.  The evolved controllers are presented and analyzed in chapters 5 and 

6 used 150 separate sensor inputs.  In order to accommodate these, the size and 

complexity of the evolved neural network controllers were considerably greater than 

those used in other ER research.  A simulation environment was integrated with a real 

environment with the main coupling point being at the level of the processed video 

sensors.  Controllers were evolved in simulation and transferred to real robots.  Both 

simulated and real controllers received sensor information of exactly the same format.  

Controllers evolved in this dual environment could be transferred directly from 

simulated to real robots, and even from real robot to real robot without any further 

modification. 

   

Third, after the evolutionary process was halted, fully evolved controllers were 

evaluated in extensive competitive tournaments against hand-coded knowledge-base 

controllers designed to play the same team game as the evolved controllers.  Results 
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obtained from the tournaments allowed the evolved controller performances to be 

measured with an absolute metric, even though they had been evolved using a relative 

competitive metric.  An evaluation of the results shows that the best-evolved 

controllers could out-play the hand-coded controller over a series of many games.  

Fully evolved controllers were also evaluated in competition with other evolved 

controllers and less evolved versions of them selves using similar methods.  

 

1.2 Overview Of Dissertation Chapters 

This section contains an overview on the dissertation. 

 

Chapter 2 presents a brief review of the origins of evolutionary robotics (ER).  

Research in the field is summarized in an extensive literature review.   Methods of 

measuring fitness for selection in the artificial evolution of behavioral robotics 

controllers are reviewed.  The definition and application of these fitness metrics is 

identified as a significant limiting factor in the field of ER. 

 

In Chapter 3 preliminary research related to the later main focus of this dissertation is 

summarized.  First an early simulation based imitative learning experiment is 

discussed.  Second, work is discussed in which artificial neural network based robot 

controllers were evolved in simulation to perform a locomotion and object avoidance 

behavior using simple binary tactile sensors.  The evolved controllers were then 
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transferred to real robots for experimentation.  This represented the first work related 

to this dissertation that was verified using physical robots. 

 

Chapter 4 describes an evolutionary robotics research test-bed that was developed in 

conjunction with this research.  The test-bed consists of a colony of mobile robots, a 

physical reconfigurable maze environment, a closely coupled simulation 

environment, an evolutionary neural computing application, and a vision-based 

sensor system. 

 

Chapter 5 describes the use of artificial evolution to synthesize neural network based 

controllers for mobile robots engaged in team behaviors.  For selection of the fittest 

controllers during the artificial evolution process, a competitive relative fitness metric 

is defined.   The metric is used to evolve controllers to play a competitive game with 

teams of autonomous mobile robots.  In this research, populations of robot controllers 

were evolved to play the game Capture the Flag in maze environments.  Controllers 

were evolved under different sets of environmental and selection conditions.  Results 

from these evolutions are presented and evolved robot controller behaviors are 

analyzed qualitatively over the course of evolution.  The controllers were further 

tested on real robots and results from these tests are discussed. 

 

In Chapter 6 an additional metric is derived.  This metric deals with the post evolution 

evaluation of robot controller performance.  Evolved game-playing robot controllers 

were played in competition against a knowledge-based controller.  Several extensive 
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tournaments of 240 games were conducted and results from the tournaments are 

presented.  These results serve to rank the evolved controllers with respect to a 

controller of well-defined abilities (the knowledge-based controller). 

 

Chapter 7 presents concluding remarks including an overview of results presented in 

this dissertation and a discussion of current issues related to the field of ER.  Several 

potential future lines of research related to this work are also discussed.   
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CHAPTER 2.  EVOLUTIONARY ROBOTICS AND 
ARTIFICIAL EVOLUTION 

 

 

 

The fundamental goal of evolutionary robotics (ER) is to develop automatic methods 

of autonomous mobile robot controller synthesis that do not require hand coding or in 

depth human knowledge of the robot task for which the controller is intended.   

 

As the state of evolutionary robotics technology stands now, human-designed robot 

controllers can significantly out-perform automatically generated or evolved robot 

controllers.  Nonetheless, human designed controllers are brittle and can fail in 

situations not considered in the initial design.  Also, humans may be incapable of 

directly designing controllers beyond a certain level of complexity.   

 

In order to produce less brittle robot behavioral controllers, ones that can function in 

environments not understood by humans, or ones that produce behaviors beyond the 

complexity that a human can design, automated methods are likely to be required.  

We must develop technologies that allow us to synthesize controllers that produce 

desired complex behaviors.  One possible way to do this is to automate a search 

process in the search space of all possible controllers for one that behaves in a 

desired way.  This is the focus of evolutionary robotics (ER).   
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The concepts motivating ER are not new, but it has only been in the last 10 years that 

any serious attempts have been made to evolve intelligent autonomous robot 

controllers.  This chapter will review relevant research from the literature and discuss 

some of the most pertinent points raised therein.  In particular, current methods for 

determining controller fitness for the purposes of driving an artificial evolutionary 

process are identified as limiting factors in the field. 

 

2.1 The Origins and History of Evolutionary Robotics 

2.1.1 Roots and Definitions 

ER has its roots in behavioral robotics [1], artificial life [2], evolutionary computing 

[3], and machine learning.   

 

Perhaps the earliest behavioral robotics work was done by Gray Walter in the early 

1950’s [4].  Walter constructed a three-wheeled autonomous robot, called the tortoise, 

which displayed simple behavior including homing on light sources and returning to a 

recharging station when its battery was low.  The tortoise was a purely analog device 

with very simple reactions, yet it gave the appearance of displaying complex 

behavior.  Although, the tortoise’s behaviors were in fact limited, they demonstrated 

by example that very simple rules can lead to complexity when expressed in a system 

that can act and react within a physical environment.   

 

 7 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

In the 1980’s Braitenberg developed the concept of an autonomous robot controller in 

terms of direct connections of varying complexity from sensor inputs to actuator 

(drive motor) outputs.  Braitenberg produced a classification of autonomous mobile 

robots based on the degree of complexity related to the mapping of primary sensor 

inputs to final actuator outputs [5].  This classification, though, was mainly focused 

on simple reactive controllers.   

 

Modern behavioral robotics employs a wide variety of conceptual and structural robot 

control architectures.  These include nested hierarchical controller structures [1] and 

quasi-parallel controller paradigms such as subsumption architecture [6].  

Autonomous robot controllers developed using Evolutionary Computing methods are 

distinct from most other modern control structures in that they are consider to be 

“model-free”.  

 

Controllers that produce actuator outputs as a direct function of sensor inputs, without 

using an explicit internal environment model are referred to as being “model-free”.  

Almost all robot controllers developed with ER methods fall into this category.  It is 

possible to make the case that no system that interacts with its environment in an 

intelligent way can be truly model free.  Even so, controllers that are constituted 

entirely of sensor input to actuator output mappings do not need to contain anything 

approaching an explicit environmental model.  If a controller were hand-designed, as 

was the case in Grey Walter’s tortoise, it is fair to say that the human designer made 

use of his/her own internal complex world model to configure the controller in the 
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first place.  If a similar controller were evolved in an environment based on its own 

interactions, however, it is fair to say that the resulting controller is indeed model-

free.  It is possible that a controller could evolve an environmental model, if it were 

very beneficial to the performance of a particular task.  However, this is very unlikely 

using current ER methods. 

2.1.2 The History of Evolutionary Robotics Research 

Starting in the early 1990’s, advances in computing speeds allowed initial ER 

experiments to be conducted.  Throughout most of the 1990’s feasibility studies and 

proof-of-concept research were performed.  In this section, ER research is chronicled.  

There is a fair amount of experimental research reported in the ER literature (on the 

order of 400-600 reports total).  Much of the literature is made up of reports detailing 

the same or almost identical experiments presented by different members of related 

research groups.  Here, the earliest examples of particular concepts and experiments 

are reported on.  Later similar work is only briefly noted.  In the entire literature, 

there are only 10 to 15 distinct experimental results of real interest.  The entire 

remainder of the literature is comprised of either repeated reporting of the same 

results and/or slight variations on procedural methods.  In this section only, dates are 

included in the text along with the reference citations.  This was done to give a sense 

of the relative timing of important ER developments. 

 

Early experimental research into ER (1992) is attributed to Koza [7].  In that work, 

genetic programming (GP) was used to evolve robot control programs for a wall-

following task.  This work might actually fall better under the heading of artificial life 
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(AL) since only simulated robot agents were used and no attempt was made to apply 

the work to real robots.  Early works by Brooks [6][8] are often sighted in the ER 

literature.  However, Brooks’ ER work was almost entirely speculative and 

philosophical and included very little simulated or real-world evolutionally robotics 

research.  In [9] Brooks does report on a GP based robot controller evolution 

application similar to that used earlier by Koza [7].   

 

Navigation with obstacle avoidance behaviors using wheeled robots were studied in 

early ER work and continue to this day to be used as benchmark tests of ER methods.  

In [10] (1994) Nolfi et. al. report on the fully embodied evolution of navigation and 

obstacle avoidance in a real two-wheeled robot using 8 infra-red (IR) sensors and 

small recurrent neural networks.  Their evolutionary process required 100 generation 

and about 60 hours to produce successful behaviors.  In [11] (1995) Jakobi et. al. 

report on the evolution of obstacle avoidance and of phototaxis behaviors in a 

simulated two-wheeled robot using real sensor data.  Similar later work can be found 

in [12][13][11][14]. 

 

Locomotion and obstacle avoidance behaviors in legged robots have been the subject 

of several ER studies [15][16][17].  An early embodied ER experiment (1994) is 

reported on in [18].  There, neural networks were evolved to produce oscillating leg 

gaits for a physical salamander-like animate.  That work, however, did not include 

any sensor stimulus into the evolved system.  In [15] (1994) Gruau reports on a 

cellular encoding scheme for evolvable modular neural networks for legged robot 
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control.  Filliat et. al. [16] (1999) were able to evolve efficient locomotion and object 

avoidance behaviors.  In their research, networks of threshold neurons were evolved 

to produce appropriate output signals to the leg actuators of a hexapod robot in 

response to IR sensors mounted on the robot.  In this case evolution was carried out 

on populations of ANN’s encoded with a descriptive encoding syntax similar to 

Gruau’s cellular encoding [15].  Controllers were evolved in simulation and 

transferred to real robots for testing.  Jakobi et. al. [17] (1998) described the use of 

minimal simulation to evolve behaviors in an eight legged robot with sixteen actuator 

motors.  An ANN controller structure was used.  Similarly to Filliat et. al. [16], 

walking and obstacle avoidance behaviors were evolved in simulation and then tested 

on a real robot. 

 

Homing behaviors such as phototaxis and chemotaxis constitute an additional class of 

commonly used benchmark behaviors in ER.  In [20] (1993) Cliff described the 

evolution of neural network controllers for a simulated two wheeled robot that used 

simulated photo detectors and tactile sensors.  This simulated robot was evolved to 

travel to, and remain at the center of its world.   In [21] (1994) Nolfi et. al. describe a 

simulation environment in which very simple cellular agents learn to find food 

objects.  However, the cellular simulated word was quite simplified and this work 

might also fall more under the heading of artificial life (AL) than ER.  Floreano et. al. 

report on a somewhat more complex behavior in [22] (1995) in which robots evolved 

a repetitive homing behavior that simulated returning to a battery recharging station 

in response to low energy levels.  That work was carried out completely using 
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embodied evolution and required approximately ten days to complete 100 

generations.  Similar work was reported in [23].  In [24][25] Kodjabachian et. al. 

(1998) describe the incremental evolution of walking, object avoidance and 

chemotaxis in a simulated six-legged insectoid robot.  In [26] Hornby et. al. (2000) 

describe the evolution of ball chasing using an 18-DOF quadruped robot. 

 

Competitive evolution in which the fitness of one individual may affect the fitness 

evaluation of another is a central theme of the research described in this dissertation.  

In the literature, several examples of competitive evolution exist in the form of co-

competitive evolution.  Cliff and Miller (1995) investigated the co-evolution of 

competing populations in the form of predator-pray behaviors [27][28].  Those works 

mark the first use of co-competitive selection in ER in which the fitnesses of the 

agents were affected by the fitnesses of other evolving agents.  Other similar later 

works have been reported on in [29][30][31][32].  Direct competitive evolution of 

controllers with in a single population is investigated in research related to this 

dissertation [33][34] and will be described in detail in chapters 5 an 6.   

 

There has been a small amount of research into the co-evolution of robot bodies and 

controllers [35][36][86].  For example, in [35] (1999), both sensor configuration and 

neural controller structures were co-evolved for navigation and obstacle avoidance in 

two-wheeled robots.  Jordan et. al. describe experiments involving evolution in 

simulation followed by the physical construction of real robots bodies made from 

triangular trusses [36] (1999).  Such work is quite limited because it is extremely 
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difficult using current technologies (even in simulation only) to set up a system that 

can readily benefit from the evolution of physical and controller structures 

simultaneously.  

 

In the last few years, somewhat more complex tasks have been investigated.  It should 

be noted that many of these behaviors are only marginally more complicated than 

behaviors achieved in the earliest days of ER.   

 

Peg pushing behaviors were evolved in [37] (1999) [38] (2000).  In each of those 

works, the task required two-wheeled robots to push a peg (small cylinder) toward a 

light source.  Earlier in, [39] Lee et. al. (1997) investigated a similar box-pushing 

behavior using GP.  

 

The most difficult behaviors addressed in the literature involve some form of 

sequential action.  Nolfi reports on the evolution of a garbage collection behavior in 

which a robot must pick up pegs in an arena and deposit them outside the arena 

[40](1997).  In [41] Ziemke (1999) studied the evolution of robot controllers for a 

task in which a robot must collide with objects (collect) in one zone and avoid them 

in another.  In [42] (2000), Floreano et. al. report on the evolution of a robot behavior 

in which robots move to a light and then back to a home zone.  Another example of 

evolution more complex behaviors is reported in Tuci et. al. in [43](2002).  There, 

robot controllers evolve to produce life-time learning in order to predict the location 

of a goal object based on the position of a light source. 
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Recently, flocking or group movement behaviors have been investigated.  Ashiru 

describe a simple robot flocking behavior in [44] (1998).  A two-robot coordination 

task in which two robots evolve to move while maintaining mutual proximity is 

reported by Quinn in [45] (2000).  Baldassarre et. al. [46] (2002) evolved 

homogeneous controllers for a task in which 4 robots must move together in a small 

group toward a light or sound source.  

 
Table 2.1.  Summery of Landmark ER Research Results. 

 

Date Author and reference Evolved Behavior 
1992 Koza [7] Simulated wall following 
1993 Cliff et. al. [20] Simulated zone homing 
1994 Nolfi et. al. [10] embodied evolution of navigation 

and object avoidance  
1996 Cliff and Miller [27] Co-evolution of predator and prey  
1997 Nolfi [40] Peg collection and deposition 
1998 Jakobi [17] Octopod locomotion 
2000 Quinn  [45] Multi-robot Coordinated 

movement task 
2000 Floreano [42] Sequential zone homing 
2001 Smith et. al. [47] Differentiate and home in on 

shapes 
2002 Tuci et. al. [43] Life-time learning task involving 

using light source to locate goal 
 

Table 2.1 contains a list of important results in the development of ER.  Conceptually 

speaking, these results are incremental improvements.  None of them is really 

representative of advances due to the discovery of fundamentally new methods, or the 

development of new basic theory.  As will be discussed in the next section, the field 

of ER has become somewhat stagnant.  
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2.2 The State of the Art of ER 

This and the next section discuss current trends and issues in ER.  The field of ER has 

been reviewed in several publications [19][48][29][49].  Pertinent issues were raised 

in those works and include 1) embodied evolution in real robots vs. evolution in 

simulation, 2) the coupling of simulation to reality, 3) controller architecture, 4) the 

application of ER methods to more sophisticated and general behaviors, and 5) sensor 

complexity and configuration. 

 

In addition to these issues, in Section 2.3 we will focus on methods of performance 

evaluation.  We make the case that fitness evaluation during evolution is one of the 

major factors affecting the issue of generalization of ER methods to produce more 

sophisticated robot behavioral controllers. 

2.2.1 Simulation or Embodiment 

The question of whether simulation, embodied evolution or a combination of both is 

the best approach to advance ER has received attention in the ER literature 

[11][50][51].  The question has not yet been fully resolved.  In [50] the authors made 

the case for the continued use of embodied evolution to address issues related to the 

extensibility of ER methods.  In the research reported in this dissertation a somewhat 

different view is taken: the argument presented here is that the fundamental difficulty 

facing ER is the formulation of training conditions (whether simulated or real) that 

are capable of eventually evolving complex behavior in a truly automated fashion.  

The issues of simulation fidelity can be dealt with to a large degree by careful 
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implementation and by paying close attention to the interface between simulation and 

reality.  Several issues related to difficulties of transference from simulation to reality 

were investigated in [11] [87] and found to be amenable to various remedies.  Also, 

using robot interaction with the real world as the only form of performance evaluation 

is too slow and expensive:  if simulation is competitive with reality now, in a few 

years increasing computer speeds will obviate the need for fully embodied evolution, 

at least for the types of behaviors within the grasp of current ER methods.  It is not 

argued that embodied evolution will never yield results of value:  massively parallel 

embodied evolutions involving hundreds or thousands of robots with advanced 

computing capabilities may extend the domain of ER.  These types of experiments are 

currently out of reach.  On the other hand, embodied tuning of evolved controllers 

may always be required for some types of behavioral evolutions.  

 

Some ER work has been focused on making simulation methods simpler and faster.  

For example, minimal simulations have been investigated in [17].  Minimal 

simulation methods involve the corruption of all simulation environment elements 

with stochastic noise except those elements deemed to be important to the 

development of a particular behavior.  One criticism of minimal simulation is that it 

requires humans to have sufficient knowledge of the characteristics of a desired 

behavior to select environmental which features are important to it.   

2.2.2 Transference from Simulation to Reality 

As noted above, there has been considerable research devoted to transference of 

controllers evolved in simulation to real robots.  Sampling the physical system to 
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obtain a set of realistic sensor and robot-environment interactions has been used to 

generate high quality simulators [11].  Injection of appropriate levels of noise into 

simulation environments has also been shown to aid in transference [11].  In [52] a 

gantry apparatus that supplied real sensor data but allowed rapid repositioning of the 

sensor view is described.  That method was intended to limit sensor transference 

issues while still allowing rapid evaluation of controllers.  These methods have been 

shown to improve transference.  There are however, a fair number of examples of 

controllers evolved in simulation that were effectively directly transferred to real 

robots [40][29][16][23]. 

2.2.3 Controller Architecture 

Selection of controller structure has also been an issue.  The majority of current ER 

work uses neural network based controllers.  Much of the work, though, uses very 

simple network topologies and restricted weight values [53][22][40].  Such 

restrictions limit the scalability of the methods studied.  Although neural networks are 

the dominant form of ER controller structure, the utility of other controller types has 

not been fully explored.  Genetic Programming (GP) has been used to develop 

controllers [54][55] but it is argued that GP syntactic constructs restrict the controller 

search space to such a degree that the evolution of ideal controllers for complex tasks 

becomes intractable.  As is the case with neural networks, successful evolution of GP 

based controllers that perform simple tasks yields little information about the 

scalability of such methods.  Evolvable hardware has also been considered for use in 

ER controllers [29].  However, it is not clear whether the constraints of evolvable 
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hardware systems limit their utility for ER methods.  Only a small proportion of ER 

research has used such systems. 

2.2.4 Extension of ER to Complex General Behaviors 

Possibly the most important unanswered question looming over the field of ER is that 

of whether the methods used to obtain the simple proof-of-concept results to date can 

be extended and generalized to produce more sophisticated behavioral control.  In 

turn, a key issue related to the successful evolution of complex behaviors is the 

specification of a training fitness function or objective function. 

 

The most complex fully evolved behaviors to date include no more than three or four 

coordinated fundamental sub-behaviors.  Examples were reported in Section 2.1 

above  [40][43][42][44].  In each of these, the fitness functions were fairly complex, 

and relatively selective for a pre-defined solution.   

 

The main value of the proof-of-concept ER work to date has been that it has shown 

that neural controller structures can be configured to produce complex and functional 

behaviors in robots.  Said another way, neural networks can be evolved into self-

regulating sensory/motor close loop systems for use as autonomous mobile robot 

controllers.  What has not been shown is that ER methods can be generalized to 

complex behaviors.  In particular, no ER work to date has shown that it is possible to 

evolve arbitrarily complex controllers for the general case. 
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In 1992, Brooks suggested that evolved controllers would need to be one to two 

orders of magnitude more complex (than automatically generated programs of the 

time) to compete with hand coding techniques [9].  In the intervening decade, this has 

in no way been achieved.  Many of the initial concerns and criticisms of the field of 

ER that were related to embodiment [8] and transference from simulation to reality 

[26] have been addressed.  However, very little fundamental progress has been made 

in ER in the last 5 years.  The problems do not lie in representation, transference or 

embodiment.  Rather, they lie in the most basic elements of the process of automatic 

development of intelligence.  As will be discussed in Section 2.3 these problems 

largely stem from the fundamental problem of arbitrary controller fitness 

measurement during selection and replication over the course of evolution.  

Currently, there are no truly generalized methods of fitness selection that could be 

applied to evolve arbitrarily complex behaviors.  Concerns related to fitness selection 

remain largely unresolved.  The development of methods for general fitness selection 

during evolution of controllers is crucial.  This view is reflected in some recent ER 

literature [56] and had been pointed out earlier in [22]. 

2.2.4 Sensor Complexity 

An additional issue related to the further development of ER is that of sensor 

complexity.  Almost all ER work to date has involved the use of IR sensors, photo 

detectors and sonar.  These generally constitute less than 10 total real valued inputs to 

the robot controllers.  The sophistication of sensory systems in ER has remained 

relatively constant since the mid 1990’s.  A very few research groups have reported 

on the use of video sensing, but in almost every case, information from the video 
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images has been reduced to only a few input values, usually less than 10.  Really, 

these must be considered glorified photo-detector sensor systems.  For example, in 

[57] Nolfi et. al. (2002) evolved a two-wheeled robot behavior that used a linear 

vision system made up of 8 photoreceptors to home in on the larger of two 

rectangular shapes.  One example in which a more sophisticated vision system was 

use might be the work described in [58].  There, video images were reduced to a 5 by 

5 grid of summed values, but these were fed into a preprocessing network and only 2 

sensor inputs were passed on to the neural network controller.  One other instance of 

the use of video sensing in ER is the work of [59].  In that case, images were 

processed to detect only a single object (a yellow ball) using knowledge-based 

methods.  Two inputs, the angle and “size” of the object, were then given to the 

evolvable portions of the controllers.  Additional such work is discussed in [88]. 

 

Robot controllers receiving much more extensive senor information may produce 

qualitatively different and more advanced behaviors.  A concern related to number 

and type of sensors has been raised in some research.  It has been assumed that 

systems of large size, and with many sensor inputs are difficult to evolve because of 

their high dimensionality.  This is often referred to as the “curse of dimensionality”.  

However, and perhaps surprisingly, evolutionary RL methods are not as susceptible 

to high-dimensionality problems related to input dimension as are error back-

propagation training methods.  It may be the case that evolved networks learn to use 

what they need, and ignore extraneous sensor data and internal complexity.  In the 

research reported on in this dissertation, issues related to sensor complexity have been 
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address by supplying large complex evolving neural controllers with 150 or more 

processed video sensor inputs.  This is an order of magnitude more than has been 

studied in other work. 

 

2.3 An Overview of Fitness Functions for Selection in ER 

Artificial evolution and evolutionary computing (EC) methods require the 

formulation of functions to be used for measuring fitness of individuals (or solutions) 

in evolving populations.  A fitness function, (sometimes called an objective function) 

allows the individuals in a population to be ranked from fittest to least fit.  Ranking is 

integral to the artificial evolution processes used in ER for selection and propagation 

of populations of evolving controllers.  In this section, evolutionary robotics is 

addressed in the context of fitness selection.  A summery of fitness functions used in 

current and past ER research is presented.  These are categorized into several broad 

classes.  In addition, the pros and cons of methods of selection are addressed in a 

comparative fashion.  We especially focus on aspects of fitness selection that have 

ramifications for the application of ER methods to more complex problems. 

 

The process of controller evolution in ER is ideally one of primary generation rather 

than optimization.  In most cases the goal of an ER application is to evolve an 

autonomous robot controller that will produce a desired complex behavior or be able 

to complete a desired task.  The robot controller must receive sensor signals and 

generate actuator commands over many iterative cycles to produce the behavior.  At 
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each iteration, the controller processes sensor data, and alters its relationship to its 

environment by producing actuator commands that move the robot.  This movement 

in turn alters the incoming sensor data.  This process can be thought of as a complex 

sensor-controller-actuator-world loop that is mediated by the controller in such a 

fashion as to generate the desired behavior.  For all but the simplest of robot 

behaviors, the dynamics of the related sensor-controller-actuator loop are not known.  

If they were known, there would be little point in resorting to evolutionary computing 

methods to derive controllers as they could be formulated directly from such 

information.  More importantly, the actuator signals that will result in the good 

expression of a complex behavior are generally not known.  Hence, it is not possible 

to formulate an error back-propagation training scheme to train controller structures.  

Said another way, a sensor-actuator training data set is not available in the behavioral 

robotics case.  Populations of behavioral robotics controllers must be evolved using 

selection based on the expression of behavior, rather than by the optimization of a 

known input-output mapping. 

 

Although the issue of fitness function specification is absolutely fundamental to the 

application of ER to complex problems, it has been largely overlooked or glossed 

over by researchers up to this point.  Two important conflicting factors arise during 

the process of fitness function specification.  These are 1) the need to select for fitness 

in initial populations that have no measurable ability to complete an overall 

(complex) task, and 2) the desire to produce fitness measures with a minimum of 

human bias.  If individuals in a population have no detectable level of fitness, then 
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they cannot be ranked in order from fittest to least fit.  In such a case, selection is no 

better than random and artificial evolution cannot proceed.  This is commonly 

referred to as the Bootstrap Problem.  The second factor, the need to limit the 

injection of human bias into evolved solutions, is a requirement (rather than a desire) 

if ER methods are to be extended to general non-trivial problems in which humans 

have incomplete domain knowledge.  Most ER work to date has neglected the second 

factor in order to address the first.  Indeed, for very simple behaviors, on which much 

of the early ER work was based, this issue did not arise.  This is because initial 

controller populations generally do have some detectable and differentiatable fitness 

with regard to the performance of very simple tasks.  Unfortunately, this is rarely the 

case for complex and non-trivial tasks.   

 

There has been some work focused on developing taxonomies of fitness functions 

[56] [60].  In  [56] the authors propose a “fitness space” to help define and compare 

fitness functions: this was presented as a continuum between functional and 

behavioral elements.  In [60] the authors present a methodological framework for 

reinforcement learning fitness function design.  In that work, the method was applied 

to a very simple corridor following behavior using a tank-like mobile robot.  These 

frameworks however, do not aid in the formulation of generalized fitness functions 

for arbitrary complex behavioral robotics tasks.  This is especially true for cases in 

which the human designer has limited knowledge of the behavioral dynamics related 

to the robot task in question. 
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In the following several sections (2.3.1-2.3.4) a high-level general classification of 

fitness functions used for selection in ER is presented.  This is done to give a general 

context for the presentation and discussion of the bimodal fitness function developed 

and applied in the research presented in the following chapters.  The categories 

considered here are fairly standard within the research field.  We consider four main 

classes of fitness functions.  These are 1) functional (complex functional), 2) 

incremental, 3) aggregate (success/failure), and 4) competitive.   

2.3.1 Functional Fitness Functions 

Functional fitness functions (or complex functional fitness functions) can include 

terms that measure simple response-behaviors, as well as sensor-actuator responses 

and any other factors the human designer may choose to include to improve selective 

power.  In this context, a simple response-behavior is one in which a predefined 

action is taken in response to a particular known sensor input pattern.  For example, a 

simple object avoidance response-behavior might be, if the value of a particular 

sensor drops below a predefined threshold, then generate a turn-left drive motor 

actuator command.  It was noted earlier that for most complex autonomous robot 

behaviors, the optimal sensor-actuator relationships that will generate a given 

behavior are unknown.  In the very simple case though, these relationships might be 

known, or could be handcrafted by a human designer.  For many of the proof-of-

concept ER experiments reported in the literature, sensor-actuator relationships are 

partially selected for and appear as terms in functional fitness functions.   
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Functional fitness functions are almost always formulated by trial and error and/or 

based on the human designer’s expertise (and often a combination of both).   

 

Much of the ER research reported to date has used functional fitness functions to 

investigated the evolution of extremely simple behaviors.  These include phototaxis 

[52][50] and navigation with object avoidance [24][22][13].  With difficulty, and with 

sufficient knowledge of the dynamics of a behavior, functional fitness functions can 

be extended to evolve controllers for somewhat more difficult robot tasks.  For 

example, in [61] the authors describe the evolution of a coordinated movement task 

involving several robots.  Other examples of relatively complex behaviors evolved 

using complex hand-formulated fitness functions include [40] and [41].  Respectively, 

these report the evolution of an object collection and deposition task (garbage 

collection) and a task in which a robot must collide with objects (collect) in one zone 

and avoid objects in another zone. 

 

Additional examples of the formulation and implementation of functional fitness 

functions are found in [17][62][63][64]. 

2.3.2 Incremental Fitness Functions 

Incremental fitness functions overcome the problem of sub-minimally competent 

initial populations (the Bootstrap Problem) by augmenting the difficulty of the task 

during evolution.  Often this is a process of explicit training of simple sub-behaviors 

followed by more complex behaviors.  The main criticism of the use of incremental 

fitness functions is that they restrict the course of evolution to the degree that 
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resulting controllers cannot be considered to have evolved truly novel behaviors.  

They represent the optimization of hand-designed solutions.  Even so, several of the 

most complex evolved robot behaviors reported on in the ER literature were 

developed using incremental fitness selection functions.  In [65] the authors report on 

the evolution of a prey capture behavior using incremental evolution.  In that work, 

the researchers compare their incremental fitness selection to pure aggregate 

success/failure selection (using a predefined competent opponent) and report that only 

the incremental approach is able to produce fit controllers.  Further examples of the 

use of incremental fitness functions in ER include [39][38] and [24].   

 

One form of incremental evolution involves augmenting the difficulty of the 

environments in which the robots must operate while using a single aggregate 

success/failure fitness function. This is referred to as “environmental-incremental” 

evolution. This form of incremental evolution may not constrain the controllers 

search space to the degree that evolution must converge on a particular predefined 

solution.  Very little work has been done using purely environmental-incremental 

evolution.  In [66], the authors use this type of selection to evolve controllers for a 

peg collection task similar to the garbage collection task in [41].  That research shows 

that environmental-incremental evolution using a pure aggregate success/failure 

selection function can produce functional controllers.  However, it is not clear to what 

degree the selection and augmentation of training environments shaped the final 

evolved controller population.  Other examples include [67] and [64]. 
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2.3.3 Aggregate Fitness Selection 

Purely aggregate fitness functions select for high-level success or failure of the 

complete behavior that the controllers are being evolved to perform.  This type of 

selection reduces injection of human bias to a minimum by aggregating the evaluation 

of benefit (or deficit) of all sub-behaviors into a single binary value.  This is often 

called “all-in-one” evaluation.  Aggregate fitness selection had been largely dismissed 

by the ER community because in many instances initial populations of controllers 

have no detectable level of overall competence.  Even so, aggregate fitness selection 

in one form or another appears to be the only fitness selection method that can be 

applied to generate complex controllers in the general case without injecting 

restrictive levels of human or designer bias into the resulting evolved controllers.  A 

rare example of aggregate fitness selection applied to the evolution of a complex task 

in ER is found in [30].  For truly complex behaviors, functional fitness selection, and 

incremental fitness selection result only in the optimization of human designed 

controller strategies.  They are not examples of the primary evolution of intelligent 

behavior.  At first glance, this appears to present a rather bleak outlook for the future 

of ER.  And in fact, ER has progressed very little in the past five years.  However, it 

is possible in many cases to overcome some of the problems associated with 

aggregate selection.  One such method involves utilizing competitive evolution to 

present a continually increasing task difficulty to an evolving population of 

controllers. 
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2.3.4 Competitive and Co-competitive fitness selection 

In this work we promote the hypothesis that competitive fitness selection methods 

have the potential to overcome current limitations in ER related to fitness selection.  

Competitive fitness selection utilizes direct competition between members of an 

evolving population.  Robot controllers compete against one another so that the 

behavior of one robot directly affects the fitness evaluation of another.  This concept 

has received a limited but growing amount of attention.  Several examples of co-

competitive evolution involving populations of predator and prey robots exist in the 

literature [30][31].  As noted in those works, two co-evolving populations, if 

initialized simultaneously, stand a good chance of promoting the evolution of more 

complex behaviors in one another.  The hypothesis is that as one population evolves 

greater skills, the other responds by evolving reciprocally more competent behaviors.  

The research presented in [30] and [31] shows this effect only to a modest degree, but 

there are results from other areas of evolutionary computing that suggest that given 

the correct evolutionary conditions, pure aggregate selection combined with 

competitive evolution can result in the evolution of very competent behaviors 

[68][89].  For example, in [68] neural networks were evolved to play computer 

checkers at the expert level using pure aggregate win/loss selection in a competing 

population.   

 

A reciprocating ramping up of competitive environmental difficulty is also seen in 

competitive selection in a single population.  This is referred to as the “Red Queen 
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Effect” in the literature and indicates a situation in which an evolving population 

alters its own fitness landscape over the course of evolution. 

  

One of the main goals of the research presented in this dissertation was to investigate 

the application of aggregate selection and competitive selection to evolve very large 

neural networks using numerous processed video sensor inputs for behavioral 

robotics control.  In order to address the issue of initial populations having no 

detectable level of fitness, we also introduce the concept of multi-modal fitness 

selection.  This is discussed in detail in Chapter 5. 

 

2.4 Chapter Summary 

This chapter contained an introduction to the field of evolutionary robotics (ER).  A 

review of the ER research literature was presented and important contributions to the 

field were identified.   In addition, challenges and issue relevant to the current state-

of-the-art were discussed.  The issue of fitness selection was discussed in detail in 

Section 2.3.  In that section, a taxonomy of common fitness selection functions was 

outlined, and the pros and cons of function types were discussed.   
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CHAPTER 3.  EARLY WORK 
 

 

 

This chapter focuses on preliminary work that predated the main body of later 

research.  In particular, a simulated robot navigation behavior generated using 

imitative learning (behavioral cloning), and a later physical robot behavior using 

tactical sensors will be discussed.  These experiments chronicle the development of 

an evolutionary robotics research platform.  The early configurations of this ER 

platform and associated experiments are also included here so that their results can be 

compared to later more advanced work.   

 

In addition, this early work constitutes independent replication of results from the 

larger field of ER research, to a degree.  Even so, these early experiments have novel 

elements.  It is interesting to note that some results generated in the field of ER are 

not replicated or verified by independent groups.  In some cases, a single result, or 

work from a single research group stands in the literature as the only example of a 

particular experimental procedure, even though that result may be included in 

numerous papers.  An extreme example of this was noted in the research of one of the 

most prominent ER research groups in which the same experimental data appeared in 

one form or another in over 30 published works.  This may reflect the nascent nature 

of the field. 
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The main results and analysis from later research are detailed in Chapters 5 and 6.   

 

3.1 Imitative Behavior 

Imitative learning or behavioral cloning, can be applied to develop autonomous robot 

control if sufficient examples of a desired behavior are available.  For instance, a 

person might remotely control a robot to perform a task.  During the course of the 

robot’s movements, robot sensor inputs and actuator outputs can be recorded into a 

coupled set of training data.  The resulting sensor/actuator data set can then be used to 

train a controller using error back propagation methods.  Such data sets can also be 

used with evolutionary computing (EC) based training methods.   

 

The task investigated was robot navigation with object avoidance.  This work is 

described in more detail in [69].  Since later planned work was to rely on evolutionary 

training of neural networks, we used EC in this early work.  Rather than using a 

human to control a robot, a knowledge-based object avoidance controller was 

constructed to drive a simulated robot agent through a simulated environment.   All 

sensor input data and actuator outputs were recorded over a period of time as the 

agent moved through its environment.  These were used to train a neural network to 

approximate the sensory motor mapping from the training data set.  Note that the 

rules used to drive the knowledge-based controller were not applied to train the neural 

network.  Only the observed resulting sensor/actuator data were used. 
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3.1.1 The Simulation Environment 

This early work was carried out entirely in simulated environments.  The simulation 

environments consisted of m by m planar grids in which each grid element was either 

solid or space.  Although the matter arrangement in each environment was 

discretized, the space itself was continuous and robot agents could exist at any real 

valued point within the range of the environment. 

 

Each simulated robot agent consisted of a data structure that contained the robot’s 

current position, orientation, sensor input readings, and actuator output values.  In 

addition a controller structure was associated with each robot.  In this work, all 

controllers were time independent mappings from the robot’s sensor inputs to the 

robot’s actuator outputs.  This can be written in functional form as follows: 

)( ncnn f SA =                                        (3.1) 

where An and Sn are the sets of actuator values and sensor values of the nth robot 

agent, respectively, and  is the controller mapping associated with the nth robot 

agent.  Controllers of this type are purely reactive.  They base actuator commands 

only on current sensor readings and integrate no information from the past.  In later 

research, it was found that purely reactive controllers were limited in their abilities, 

but for this early work, they were adequate for reproducing simple behaviors. 

cnf

 

Each robot was simulated with two motor-wheel actuators, one on each of the right 

and left sides of the robot.  Such a configuration allows a robot agent to turn in any 
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direction or move along any diameter arc by varying the inputs to the wheel motors.  

This arrangement is commonly referred to as differential steering.  

 

Laser range finding sensors were simulated so that each sensor was associated with a 

fixed orientation with respect to the robot’s body-attached frame of reference.  Each 

sensor returned a scalar value that corresponded to the linear distance between the 

sensor and the nearest solid element directly in line with the sensor’s orientation.   

This produced a whisker-like array of sensors centered along the central axis of each 

robot body frame.  A schematized top view of a robot agent and range sensor array 

detecting matter in a simulated world is shown in Figure 3.1.  The object on the left in 

Figure 3.1 is the robot agent.  The lines represent the magnitude and direction of 

current sensor readings.  The small shaded blocks in the figure represent simulated 

matter. 

 
 

Figure 3.1.  A simulated robot agent with sensor and wheel actuators in a matter-
containing environment.  The object on the left is the robot agent.  The lines represent 

the magnitude and direction of current sensor readings.  The small blocks represent 
simulated matter. 
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Three planar simulation environments were used for this work: an environment with 

linear walls that divide the space to form a maze-like structure, an environment filled 

with aggregates and clusters of matter, and an environment containing only space.  

These will be referred to as (a) Maze World, (b) Aggregate World and (c) Empty 

World respectively, and are shown in Figure 3.2. 

 

(a)                                              (b)                                               (c) 
 

Figure 3.2.  Planar simulation worlds 
 

3.1.2 Construction of the Imitative Training Data Set 

Robot agents were initially controlled with a knowledge-based controller that 

produced wheel speed values as a function of range-finding sensor input values.  Two 

simple rules were found to be sufficient to keep robot agents from getting stuck (i.e. 

becoming immobilized while in contact with material) in most environments.  These 

were formulated as follows: 

 

• Rule 1:  Each wheel motor speed was made proportional to the sum of the 

range-finding sensor readings on the opposite side of the robot. 
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• Rule 2:  If the total sum of all the range finding sensor readings was less than 

a pre-defined threshold, then the right hand side wheel motor was given a 

negative speed command. 

 

Rule 1 caused robots to veer away from objects or to remain centered between the 

walls of corridors.  Rule 2 allowed the robots to escape from corners. 

 

The method used to extract behavioral traits observed in the robots agents operating 

with the knowledge-based controllers was as follows. A simulation world was 

arbitrarily constructed.  Robot agents were initialized to random positions within the 

simulated world.  A simulation was preformed using the simple rule-based controller.  

During the simulation, all robot agent sensor readings and associated motor output 

speed commands were recorded.  These data were recorded as correlated real-valued 

input and output vectors.  These were in turn used to train an artificial neural network 

using a supervised evolutionary training.  The training data set for the neural 

controllers discussed here was derived from 50 time steps in Maze World from panel 

(a) of Figure 3.2.  

3.1.3 Neural Controller Formulation and Training 

The neural network based controllers were trained using an evolutionary computation 

based procedure.  Similar work has been done using genetic programming (GP) [70].  

That work required the careful design of an evolvable robot control syntax.  Here, we 

used standard simple neural networks.  Fully connected single hidden layer 
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feedforward networks were used.  Training neural networks of this type involves 

manipulating scalar weighting functions that operate on the inputs and outputs of the 

individual neurons in the network.  The genetic algorithm used here operates directly 

on the neural network’s set of weights; hence, the chromosome data structure is 

composed of a set of real-valued scalar numbers.   

 

x1= Range 1

y1= Left Motor

Sigmoid Hidden Layer
Neurons Linear Output

Neurons
Sensor Inputs Motor Outputs

wh11

wh1N

whIN

whI1

wo11

wo1M

woNM

woN1

Number of network
inputs: i = 1..I

Number of hidden
neurons: n = 1..N

Number of network
outputs: M = 2

y2= Right Motor

xI= Range I

x2= Range 2

yhid,N(uhid,N)

yhid,2(uhid,2)

yhid,1(uhid,1)

yout,1(uout,1)

yout,2(uout,2)xi= Range i

yhid,n(uhid,n)

 
Figure 3.3.  The robot controller feed-forward single hidden layer neural network 
architecture.  Range sensor data are fed into the network input connections on the 

right and drive motor speed commands are generated at the outputs on the left   
 

A typical network structure of the type used in this early work is shown in Figure 3.3.  

This network is a standard single hidden layer sigmoidal perceptron.  The robot 

agent’s current sensor readings, x1, x2… xI are scaled by the hidden layer neuron 
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weights, whin, summed and fed into each hidden neuron activation function, yhid(uhid).  

The summations of weighted inputs are given by equation (3.2) 

∑
=

∗=
I

i
ininu

1
hid, )whx(             (3.2) 

Similarly, outputs from the hidden layer neurons are scaled by the output neuron 

weights, woim, summed, and fed into the output neurons.   

 

The hidden layer is composed of sigmoid neurons while the output layer is made up 

of linear neurons.  The activation functions for each of these neuron types are given in 

equations (3.3) and (3.4) respectively. 

usig e
uy −+

=
1

1)(            (3.3) 

uuylin =)(                    (3.4) 

There can be an arbitrary number of hidden layer neurons; however, each output 

neuron produces a single actuator value, so the number of output neurons matches the 

number of actuators in each robot agent. 

 

The genetic training algorithm used was a population of one, mutation based, greedy 

gradient decent algorithm similar to that described in [71].  Instead of using bit strings 

to represent candidate solutions, sets of real numbers representing the weights of the 

neural networks were used.  Using the notation of Figure 3.3, a chromosome structure 

is given by: 

]wo,...,  wo..., ,wo..., , wo,...,  wh,..., wh..., ,wh..., ,wh[ 111111 NMnmMINinN=c      (3.5) 
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At the beginning of the training, all weights were initialized with small random 

numbers.  At each iteration of the training algorithm, perturbations (mutations) were 

randomly made to one or more of the elements of c to make a new chromosome, c'.   

The altered neural net was then tested with the weights specified by c' and its 

performance over the set of training data was compared to that obtained with the 

weights specified by c.  If the performance was improved, the mutations in c' were 

kept; otherwise the original c was retained and the process was repeated.  

Performance was measured using the mean squared error of output commands 

calculated with respect to the training data set recorded from the behavior of the 

controller driven animat.  This is given by E, as: 

M

yy
E

M

m
jtmjm

j

∑
=

−
= 1

2))()(( xx
                  (3.6) 

where ym(xj) is the output produced by the mth output neuron when it is presented 

with the jth set of training inputs, xj, and M is the total number of outputs.  Further, ym 

is the actual output of the mth output neuron, while ytm is the desired, or training 

output of the mth output neuron associated with the jth set of training inputs.   

 

During training, mutation occurred after presentation of each example in the training 

set rather that after presentation of the full training set.  This allowed the solution 

(weight set chromosome) the possibility of stepping out of a local minimum with 

respect to one training example with the occurrence of mutation that reduces error for 

another training example. 
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The probability of mutation of each element in the chromosome at each generation is 

dependant on the current quality of the solution (here, a solution refers to a neural net 

and associated weight set as specified by the current chromosome c).  Early in 

training when solutions are very poor, the mutation probability will be high.  As 

training continues, and the solutions become more refined, the mutation probability 

will decrease.  The following formula was used to calculate the probability of 

mutation the elements of c: 

base

current

E
E

HB ∗+=   eProb BaseMutat MutateProb         (3.7) 

Ecurrent is the present training error, E, as calculated by equation (3.6).  In this work, 

Ebase was set to be the training error calculated at the first iteration of training.  HB is 

a scaling factor used to regulate the degree to which the mutation probability was 

affected by training error.  Values used for HB in this work were generally close to 

unity.  BaseMutateProb, the minimum mutation probability, was set to be one 

mutation out of all the weights in c, on average.  The effect of (3.7) is that early in the 

training, while the error is high, the mutation probability is near one so that most 

elements of c are mutated at each training iteration.  As E decreases, fewer and fewer 

mutations occur during each training iteration.  When E is very small, the 

BaseMutateProb term dominates and only 1 mutation occurs at each training iteration, 

on average. 

 

Making the mutation probability dynamic and related to the quality of the current 

solution is thought to allow initial, poorer solutions to move more quickly through the 

solution space.  As the solution improves, smaller steps in the solution space are 

 39 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

taken.  A low mutation rate is desirable near the end of training as the solution is fine-

tuned.   

 

The magnitude of mutation was random, and normally distributed.  The center of the 

distribution was kept constant for the duration of a particular training.  Mutations 

magnitudes were on average between 1% and 5% of the weight magnitudes at the 

start of training. 

3.1.4 Testing of Evolved Controllers 

Evolved controllers were compared to both the original knowledge-based controller, 

and also to a nominal random controller.  This nominal controller produced random 

wheel speed commands that had no relationship to sensor inputs.  The wheel motor 

rates were normally distributed values around the mean of the robot agent speeds 

when operating under the knowledge-based controller in the simulation world used to 

derive the data used to train the neural network controller.  The random controller 

was included in the performance evaluation process to provide something of a base-

line minimum performance level. 

 

To drive robot agents with the trained neural controllers in simulation, robots sensor 

readings were fed into the neural network inputs and the resulting network output 

values were applied to the wheel motors. 

 

 40 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

Each of the three controllers was used to control robot agents in each of the three 

simulation environments (shown in Figure 3.2).  The results of these simulations are 

presented in this section. 

 

In each simulation environment, three simulations were preformed, using ten robot 

agents in every case.  The positions and orientations of the robots were initialized 

randomly for each environment, but were kept the same for all the controllers used in 

a particular environment so that the results could be compared.  The robot agents do 

not interact; thus, this is equivalent to ten repetitions of a simulation with a single 

agent. 

 

The Empty World and the random controller were included as comparative 

experimental controls. 

 

During each simulation, the velocity, position, and orientation of each of the robot 

agents was recorded at each time point.  The metric used for comparison of 

performance of the controllers was total distance traveled during a simulation.  For a 

particular environment, robot agents using each of the three controllers were 

simulated for an equal amount of time.  Simulation times were 100 time steps for 

Empty World and 1000 time steps for Maze World and Aggregate World. 

 

Figure 4 presents data in bar graph form comparing the mean and standard deviation 

of distances travel by the robot agents during each simulation. 
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Figure 3.4.  Mean distance traveled by robot agents using the rule-bases controller, 
the random controller and the neural network based controller, in each of the three 

simulation environments 
 

3.1.5 Discussion of Imitative Controller Evolution Results 

The results shown in the first panel of Figure 3.4 indicate that all three of the 

controllers produced motion of the robot agents in Empty World.  Since there was no 

matter in this environment, the robots could travel without the need to avoid 

obstacles.  The speed of the random controller was set to have a mean value equal to 

that of the knowledge-based controller operating in Maze World.  With the 

knowledge-based controller, wheel motor speed was proportional to range-finding 

sensor input values; hence robots being controlled by this controller moved more 
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quickly in Empty World than they did in either of the other environments because 

there was no material to detect. 

 

In Maze World and Aggregate World, obstacle avoiding behavior was much more 

important.  The random controller caused the robot agents to become stuck or 

ensnared very quickly, resulting in very short net travel distances.  Both the 

knowledge-based and the neural controllers, produced successful obstacle avoidance, 

resulting in longer total travel distances.  These results are shown in the second and 

third panels of Figure 3.4.   

 

The second panel of Figure 3.4 shows that the neural network-based controller 

performed as well as the knowledge-based controller in Maze World, although the 

variability in individual robot agent performance was greater.  This is reflected in the 

greater standard deviation of distance traveled.  The training set for the neural 

controller was derived from 50 time steps in Maze World.  The simulations above 

were performed for a period of 1000 time steps.  This indicates that, at least in Maze 

World, the neural controller was able to generalize its performance to many situations 

not seen by the training set data.  In fact, robots using the neural controller were able 

to operate in Maze World indefinitely without getting stuck on walls or in corners. 

 

In Aggregate World, the neural controller did not perform as well as the original rule- 

based controller, but it did significantly outperform the random controller.  It is likely 

that the data set used to train the neural controller did not reflect some aspects of the 
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rule base when applied to Aggregate World, since the training set for the neural 

controller was derived in Maze World.   

 

3.2 Maze Wandering with Tactile Sensors 

In this section, early work involving neural controllers with temporal processing 

abilities will be discussed [72].  As in the previous section, this work investigated the 

evolution of controllers for a benchmark basic navigation and object avoidance 

behavior.  Here, though, robots used simple tactile sensors rather than simulated laser 

range-finding sensors.  Very little, if any, other work has been conducted in the field 

of ER using only tactile sensors.  There are several examples of research involving 

tactile sensors in conjunction with other sensor types [17][29][73].  In these cases, 

tactile sensors were used in a secondary or back capacity.  Simple binary-response 

(on/off) sensors provide limited information to controllers, thus increasing the 

difficulty of control.  From a research point of view, this provides an opportunity to 

investigate the evolution of more complex control in a simple system. 

 

In this particular experiment, robot agents relied exclusively on very simple tactile 

sensors.  These give far less information at any one moment than do the range-finding 

sensors used in the simulation environment discussed in the previous section.  

Because of this, purely reactive controllers produced sub-optimal behavior.  

Controllers that make use of temporal information have the potential to outperform 
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reactive controllers.  To accommodate this a temporal neural network controller 

architecture was introduced into the developing ER research platform.   

 

Populations of controllers were evolved using a functional fitness metric for selection.   

Robot behavior was evaluated based on performance in simulated environments, and 

was not the result of an imitative process.  A true population-based evolutionary 

algorithm was implemented.  Evolved controllers were transferred to and tested on 

real robots.    

3.2.1 The Temporal Artificial Neural Network Controller Architecture 

In this subsection, we describe a temporal neural network architecture that was used 

in these preliminary experiments.  The networks made up a class of multi-layered 

recurrent and time delayed neural networks.  The delayed and recurrent connections 

imparted the possibility of developing temporal processing.  Two example networks 

are shown in Figure 3.5. These networks can be considered as fully connected 

generalizations of Elman and Jordan networks [74][75] and include recurrent 

connections from both hidden layer and output neurons.  The layered structure was 

specified before training and remained constant during the course of training.  Only 

the weights of the networks were evolved.  These layered networks represent a large 

class of network topologies, but they only very sparsely cover the space of all 

possible networks.  However, setting a connection weight in a fully connected 

network to zero is equivalent to removing that connection, hence the weight-only 

search space contains all network architecture of lower dimension.  In effect, manual 
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selection of a particular network layered structure and feedback level imposes an 

upper limit on the complexity of the evolved architectures. 

 

Sigmoid neurons were used in the hidden layers while output layers could consist of 

either sigmoid or linear neurons.  Standard formulas for these were given in equations 

(3.2) and (3.3). 

 

All the weights associated with a particular network layer m, time delay level t, and 

recurrence level s, were represented and stored in a separate N by I array.  The entire 

weight set for a given network can be given by the multidimensional matrix  

}..1{},..1{},..1{|][ ,, SsTtMmstm ∈∈∈= WW         (3.8) 

where each sub-matrix of W is an n by i matrix of weights given by 

[ ]Τ=
stmNstm ,,21,, wwwW L                                         (3.9) 

and each column vector is an ordered set of weights associated with a set of inputs 

subscripted by  to the nth neuron (}..1{ Ii ∈ }..1{ Nn ∈ ) of the mth layer, for the tth 

time delay level, and sth recurrence level: 

[ ]In www L21=w .     (3.10)  

M, T, and S, are the total number of network layers, maximum degree of time delayed 

connections, and the maximum feedback depth to previous layers of the recurrent 

connections, respectively.  
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Figure 3.5.  Example schematic representations of two neural networks developed by 
the evolutionary neural computing environment.  Network A (a) is a simple feed 

forward single hidden layer Perceptron.  Network B (b) includes two hidden layers 
and both time-delayed and hidden layer feedback connections. 

 

In Figure 3.5 Network A and Figure 3.5 Network B, the thicknesses of the connection 

lines are proportional to the absolute values of their particular associated weights.  
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These network connection graphs are generated by the evolutionary training 

environment and can be used show changes occurring in the networks during training. 

3.2.3 The Evolutionary Training Algorithm 

The neural network controllers were trained using evolutionary computing methods in 

conjunction with the robot simulation environment.  The simulation environment was 

similar to that described in Section 3.1.1 above.  Figure 3.6 shows two simulated 

worlds containing simulated robot agents.  The controllers were evolved based on 

their performance in such simulated worlds.   

 

 

 
Figure 3.6.  Two example simulated maze environments including simulated mobile 

robot agents with tactile sensors and trained neural controllers.  The dotted lines 
indicate the paths taken by the robots during the course of the simulations. 

 

At the beginning of training connection weights were initialized to small random 

values from a single random distribution, or from different distributions that 

 48 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

depended on the recurrence and degree of time delay of the particular connection.  

For the general case, weights were initialized using the following equation: 

)()()( stmRw στµ=       (3.11) 

Where µ(m) is linearly decreasing in m, and τ(t) and σ(s) are monotonically 

decreasing exponentials with maxima of 1.  Here m, t, and s represent the layer depth, 

the degree of temporal delay, and the degree of spatial feedback respectively 

associated with a particular connection/weight.  R is a number from a flat random 

distribution in the range (–1, 1).  R is re-sampled for each weight initialization.  The 

effect of the weight initialization equation (3.11) is that initial weight values closer to 

the input layer and with a lower degree of recurrence, have larger magnitudes then 

those farther into the network, and with a greater degree of recurrence.  When  µ(m) = 

k is constant, and t and s are constant unity functions, all weights are initialized to 

random numbers in the range (–k, +k). 

 

The chromosome data structure C is a set of real valued scalar numbers where each 

number corresponds directly to a particular weight w in the neural network weight set 

W, from equations (3.9) and (3.10).  An individual chromosome is specified as 

follows: 

][
],...,,[

,,,,,,,,1,1,1,1,1

21

INSTMinstm

g

, ..., w, ...,ww
ccc

=

=C
    (3.12)  

The rate (probabilistic frequency) of mutation for each weight, w, is dependant on the 

size of the sub-matrix of W to which it belongs, and is given by: 

rateBase
IN

Rate _
*
1

=       (3.13) 
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where N and I are the dimensions of the sub-matrix Wm,t,s to which w belongs and 

Base_rate is a whole number. 

 

Mutation magnitudes, for the weights in an ANN, are scaled in a similar manner to 

the weight initialization values equation (3.11).  Each weight mutation magnitude 

depends on the location of the weight within the network structure.  Hence, for each 

member of the robot controller population selected to be mutated, the new 

chromosome elements c’ of C are given by 

)(')(')('P
'

stmRw
ccc

στµη+=
∆+=

    (3.14) 

Where  is determine by the rate of mutation (equation (3.13)), µ’(m) is 

linearly decreasing in m, τ’(t) and σ’(s) are monotonically decreasing exponentials 

with maxima of 1, and η is a base mutation magnitude or step size.  Also, R is a 

number from a flat random distribution between –1 and 1. 

}1 ,0{P ∈

 

During evolution, the next generation population, P(k), is constructed from the union 

of the following four sets derived from the current population: 

 

)2(           
)}1()..1({           

)}1()..1({           
)}1()..1({)(
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U

U
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        (3.15) 

Where  is the nth individual of the population at generation k, )(n kPp ∈ np′ is a 

mutated version of pn, m /n is the fraction of the population that is mutated and 

replaced, and n is the total number of individuals in the population.   
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The population P, is always ordered from fittest to least fit before equation (3.15) is 

applied.  The result of equation (3.15) is that 1/m of the fittest controllers are 

transferred un-changed to the next generation, this same fraction of the controller 

population is mutated and added to the next generation, the single fittest member 

from two generations past is included, and the remainder of the next generation 

population is made up of the fittest remaining members of the current controller 

population.  The parameters n and m are set at the beginning of each evolutionary 

run.  Selection of values for n and m reflects a trade-off between evolutionary speed 

and chaos during training.  It was found that an m/n = 1/4 value giving a replacement 

rate of 25% produces functional controllers for population sizes from n = 20 to n = 

100.  The evolutionary algorithm described in (3.15) is a form of greedy mutation-

only (µ + λ)-EA [44], with the inclusion of the fittest member of the population 2 

generations previous to P(t) (n-elitism). 

 

Performance evaluation at each generation was based on the weighted sum of several 

factors, including the net offset between a robot’s starting position and its final 

position, (net_offset), and whether or not the robot became stuck on material within 

the simulated environment, (stuck). The robots were required to make as much 

progress through the maze as possible.  This was measured by the distance a robot 

could travel through a maze in a given number of time steps.   Implicitly, robots must 

learn to negotiate walls to maximize their progress through a maze with many walls.  

A robot that couldn’t avoid walls would soon become immobilized when its path was 
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blocked by a wall.  The following functional fitness metric was used to select for 

navigation behavior in an environment containing walls (a maze).  

stuckkoffsetmaxk
offsetnetk

lengthcurvetotalkpF i

*_*
_*

__*)(

43

2

1

++
+

=
       (3.16) 

where k1 to k4 are weighting factors.  total_curve_length is the line-integral of the full 

path followed by the robot and max_offset is the greatest linear distance obtained by 

the robot and any time during its travel.  The weighting factors were derived 

empirically through trial and error.  The desired behavior is represented by the third 

factor: maximum offset achieved by the robot from its starting position.  It was found, 

however, that inclusion of two other distance measures, and an explicit penalty for 

becoming stuck, were required to achieve evolution of navigation behaviors in a 

reasonable amount of time.  It should be noted that in all cases of performance 

evaluation during evolution, run times were limited so that the best possible 

performance would result in travel from one side of the environment to the other 

without time for a return trip.  After evolution, resulting robot controllers were 

allowed to operate for much longer periods of time to demonstrate the dynamics of 

acquired behaviors.    Performance fitness’s over several simulation runs were 

averaged before each generational selection to smooth effects of random robot 

position initialization. 

 

A number of neural network architectures were found to be evolvable to perform the 

benchmark navigation and object avoidance task in simulation and to retain ANN 

controller functionality when transferred to real robots.  In the earlier work described 
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in Section 3.1, it was found that simple single hidden layer feed forward networks 

could be trained to navigate robot agents in simulation when a model of simulated 

laser range-finding sensors was used.  Those evolved ANN controllers had no 

capacity for temporal processing.  The resulting robot agents were effectively simple 

Braitenberg vehicles [5] in that they produce motor actuator commands in direct 

response to current range-finding sensor readings.  The level of information provided 

by range finding sensors was sufficient so that purely reactive controllers could 

perform the task reasonable well in this environment.  Simple binary tactile sensors, 

on the other hand, required controllers to make use of information from the past in 

order to overcome perceptual aliasing.   For example, a robot would receive all zeros 

(off) from its set of 5 tactile sensors before it came in contact with a wall, and then 

again after it had backed away from that wall.  Controllers must make use of 

information from sensor readings from the past in order to distinguish between these 

two conditions and avoid getting caught in behavioral response loops.  That is, a robot 

must do something different when it is backing away from a wall then when it is 

approaching a wall, even though it “sees” the same thing (nothing) in both cases.  

Binary tactical sensors were used here in part to study an evolutionary system that 

would benefit significantly from the acquisition temporal processing abilities.    

 

It was found that networks of moderate complexity produced the best results in the 

least amount of simulation time.  Such networks had 1-3 hidden layers with 5-10 

processing units per layer, with all connections duplicated and time delayed for 2-4 

time steps.  For example, the best-evolved ANN controller tested in the real robots 
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and discussed below has 220 evolvable weights (see Figure 3.8).  Although our 

benchmark maze navigation behavior requires some degree of sophistication at the 

control level, an overly complex neural network structure was not found to be 

beneficial for this task.  It is likely that quite simple specially formulated networks 

could be trained to accomplish the task studied in this work.  We specifically focused 

on networks of greater complexity to show that larger more complicated network 

architectures could be readily evolved to perform these behaviors. 

   

 
 

Figure 3.7.  An EvBot mobile robot agent fitted with a whisker tactile sensor array.  
The robot is in contact with a wall and the two left-most tactile sensors are active. 

 

The evolved controllers were transferred to real robots and tested in a real maze test-

bed.  Figure 3.7 shows a photograph of a real robot fitted with a tactile sensor array.  
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The architecture of the real robots used in the research, the EvBots [76][77] is 

discussed briefly in Chapter 4. 

 

The best performing ANN controllers were found to allow the real robots to wander 

through the real physical maze indefinitely without getting stuck on maze walls, and 

to allow the robots to make continual progress through the maze, i.e. the robots didn’t 

start spinning perpetually in one spot, or bump up against the same wall over and over 

again.  Demonstration using the real robots was done mainly to show that evolved 

controllers transferred to the real world and functioned qualitatively similar to their 

simulated counterparts.  The quality of transference from simulation was evaluated in 

several ways.  The responses of the controllers to sensor signals in simulation and in 

the real robots were compared and found to be identical.  This was to be expected 

because the evolved controllers are identically similar in both cases.  This similarity is 

made possible by the platform architecture, which allows direct transfer of evolved 

controllers from simulation to real robots without the need for any modification.  In 

addition, the simple binary sensors used provide only logic values of 0 or 1 and inject 

no noise into either the simulated or real systems.  There were however, two 

differences that caused divergence between real and simulated behaviors.  These were 

1) differences between real and simulated motor/robot-kinetic responses to a given 

motor command, and 2) differences in sensor triggering when real and simulated 

robots are in proximity to objects (and simulated objects). 
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The real and simulated motor outputs were calibrated to within 15%.  The simulated 

tactile sensors always trigger at a distance of exactly 2 inches from the point at which 

the sensor whisker would be attached to the robot body.  In the real environment, and 

with the real tactile sensors, the binary switch may trigger when the base of the tactile 

whisker is anywhere between 1 an 3 inches from an object.    
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Figure 3.8.  Two schematic plots of a single hidden layer time delayed neural 

twork.  In panel (a) the network is shown before training.  Panel (b) shows the final 
trained version of the network. 
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Figure 3.8 shows the states of the best network controllers before and after evolution 

(training).  The performance metric given in equation (3.16) was used with the 

following parameter settings: k1 = 0, k2 = 20, k3 = 20, k4 = 50.  Training performance 

was averaged for each controller for 3 simulations of 40 time steps before selection 

and mutation occurred.   350 generations were required to produce the functional 

controllers tested on the physical robots.  The best trained network was found to 

retain functionality when transferred to a real robot operating in a physical maze 

similar in dimensions to the one used in training.  Figure 3.9 shows the results of 

three separate tests of the evolved controller operating in the simulated environment 

and controlling a simulated robot agent equipped with tactile sensors.  

  

  
 

Figure 3.9.  Three simulation runs using an evolved controller to navigate a simulated 
agent with simulated tactile sensors through a maze.  The robot agent is shown in its 
final position after each run in the maze.  The dotted line indicates the path taken by 

the robot. 
 

The robot agent in the panels of Figure 3.9 displayed several different behaviors that 

allowed it to avoid walls and extract itself from corners and to make progress through 

the environment.  After encountering a wall and backing out of sensor range, robot 

agents displayed sequences of moves of up to five time steps in duration before 

stabilizing to a steady-state motor output.  This indicates that the neural controllers 
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evolved responses that could make use of, or at least responded to, sensor information 

receive up to 5 time steps into the past.   Figure 3.10 shows a close-up detail of the 

path of a simulated robot agent in an encounter with a wall.  In the figure, the ovoid 

square shape is the robot, the black bar at the bottom of the figure is the wall, and the 

small dotted line indicates the path taken by the robot.  The light dots indicate the 

backward moves made by the robot directly after encountering the wall and two 

subsequent moves the robot made while it was still in sensor contact with the wall.  

The sequence of dark dots indicates the sequence of moves (all rotating and/or 

forward) taken by the robot after it was out of sensor contact with the wall, but before 

its actuator commands had stabilized to a steady state.  The sequence of post-wall-

encounter moves indicates the evolved neural controller made use of past sensor 

information to determine wheel motor commands.   

 

Robot

Robot Path

Steps while sensor are 
detecting the wall 

Post wall 
encounter steps

Wall

 
 

Figure 3.10.  Close-up of a simulated robot encountering a wall.  The dotted line 
indicates the path taken by the robot.  The light dots indicates the backward move 

made by the robot directly after encountering the wall and two subsequent moves the 
robot made while it was still in sensor contact with the wall.  The sequence of dark 
dots indicates the sequence of moves taken by the robot after it was out of sensor 
contact with the wall, but before its actuator commands had stabilized to a steady 

state. 
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Figure 3.11 shows several overhead views of the real maze environment.  In each 

panel of Figure 3.11 a real robot controlled by the trained neural network controller 

displayed in Figure 3.8 is shown.  The dotted line indicates the path taken by the 

robot in each case. 

 

   
 

Figure 3.11.  Three views of the real maze test bed.  In each panel, an EvBot mobile 
robot with the same evolved neural controller used for the simulation results 

displayed in Figure 3.9 is shown.  The robot is shown in its final position after each 
run in the maze.  The dotted line indicates the path taken by the robot.  Qualitatively, 

the sets of behaviors observed are similar to those displayed using the same 
controllers in simulation. 

 

The initial positions used for the real robot runs displayed in Figure 3.11 correspond 

to those used in the simulated world shown in Figure 3.9.  It is clear that the real robot 

agents in the physical environment deviate from the paths taken by the simulated 

agents after a few encounters with walls.  This is expected since very slight 

differences in approach angle and order of sensor contact can produce markedly 

different responses on the part of the evolved controllers.  The controllers were found 

to be quite dynamic and displayed a wide variety of similar but not identical 

responses to encounters with walls.  Qualitatively, robots behaved similarly in the 
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simulation environment as in the real world.  It should be noted that when given 

exactly the same time-sequence of sensor inputs, the real and simulated agents do 

produce the same motor output command sequences.   Sensor input sequences can be 

quite dynamic in both the simulated and real worlds, however.  For instance, a robot 

may encounter a wall, back up and turn slightly before moving forward into the wall 

again causing one or more new sensors to be triggered.  Very slight differences in the 

original approach angle can in the end result in different tactile sensor input 

sequences, which in turn can result in different behaviors.  The exact responses for 

the controllers evolved for this work were not fully characterized.  Assuming a 

possible sensor history of five time steps, there would be  possible sensor input 

sequences. (Note that a controller with five binary tactile sensors and no temporal 

processing ability would be capable of producing only  responses.)    

252

3225 =

 

3. 3 Chapter Summary 

This chapter discussed early ER experiments preceding the main body of research 

presented in this dissertation.  Two general sets of experiments were discussed.  

These were representative of early configurations of the ER research test-bed that was 

developed over the course of this research.  The experiments reviewed in Sections 3.1 

and 3.2 were published in [69] and [72] respectively. 

 

Section 3.1 discussed experiments related to the training of neural controllers to 

produce a simple maze navigation behavior in simulated mobile robots using laser 
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range-finding sensors.  An imitative learning process was used.  Robot controllers 

learned to duplicate the sensor-actuator relationships of a hand-designed controller.  

Resulting controllers were simple feedforward single hidden layer perceptrons and 

had no temporal information processing abilities.  The simulated laser range-finding 

sensors provided sufficient depth of information so that purely reactive controllers 

could navigate successfully. 

 

In Section 3.2, a similar navigation behavior was investigated, but both the robot 

sensor configuration, and the underling learning strategy were different.  In addition, 

evolved behaviors were transferred to real robots and tested in a physical 

environment.  Here, the robots were made to rely on very simple binary tactile 

sensors to perform their navigation task.  Also, no knowledge-based controller was 

involved.  Controllers were trained with a process of reinforcement learning based on 

evolutionary computing.  Populations of neural network controllers were evolved to 

maximize performance as measured by a fitness function that selected for maximum 

travel distance in an environment with obstacles.  Using the selection function 

taxonomy of Chapter 2, this function falls into the “functional fitness function” class 

described in Section 2.3.1.  The neural network architecture was more complicated 

than that used in the earlier work and allowed for both time-delayed and recurrent 

connections as well as multiple internal layers.  This was necessary because the very 

simple tactile sensors did not provide sufficient information to produce an adequate 

purely reactive controller.   
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A comparative interpretation of these two sets of experiments is that given similar 

navigation tasks, but using sensors providing different levels of information, more 

sophisticated controllers can be evolved to compensate for a very reduced level of 

sensor information. 

 

The second set of experiments also marks a step forward in the complexity of the 

evolutionary neural network architecture.  In later work, large fully-generalized 

network architectures with arbitrary connectivity and variable size are evolved.  
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CHAPTER 4.  AN EVOLUTIONARY ROBOTICS 
RESEARCH ENVIRONMENT 

 

 

A portion of the effort involved in this research was invested in the design and 

implementation of a research platform (test-bed) that supported the evolution of 

behavioral robotics controllers.  In this chapter both the platform hardware and 

software components used in this research are discussed.   

 

In overview, the evolutionary robotics research environment developed at the Center 

for Robotics and Intelligent Machines (CRIM) consists of a colony of small mobile 

robots and physical reconfigurable maze environment, a coupled multi-robot 

simulation environment, and an artificial neural network genetic algorithm base 

controller evolution application.  These elements are tied together by a vision-based 

sensor system that partially processes images into range and substance-type data.  

Here, substance-type is akin to object type, but no discrete individual objects are 

implied, only that material of a particular type is detected at a particular range (and 

angle).  This vision processing system plays and important role in increasing the 

tractability of the simulation implementation. 

 

 63 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

4.1 The EvBot Platform and Environment 

In this section, we will give an overview of the design and capabilities of the real 

mobile robot colony used in this research.  The CRIM has recently developed a new 

computationally powerful colony of small mobile robots [76][77][78].  These robots 

have been named EvBots from EVolutionary roBOTs.   

   

The EvBots make up a colony of eight small fully autonomous mobile robots.  Each 

robot is 5 in. wide by 6.5 in. long by 6 in. high and is constructed on a two track 

treaded wheel base.  Each robot is equipped with a PC/104 based onboard computer 

with an X86 software compatible 32-bit CPU core operating at 133 MHz.  The 

Robots also use non-violate solid-state memory systems including a Disc-On-Chip 

and an ATA Flash Memory PC-Card.  For communications, each robot in the colony 

is linked to the Internet via a Linksys Wireless Ethernet PC-Card. 

 

A custom Linux distribution derived from RedHat Linux 7.1 is used as the operating 

system and is capable of supporting MATLAB 5.3 in addition to other high-level 

software packages.  The robots are linked to one another and to the Internet via a 

Linksys wireless network access point that can support up to 21 devices.  Each robot 

also supports video data acquisition (up to 640x480 live motion resolution) through a 

USB video camera mounted on each robot.  Photographs of several fully assembled 

EvBots are shown in Figure 4.1.  Panels (a) to (c) show pictures of EvBots in various 

configurations, while panel (d) shows an EvBotII.  The recently developed EvBotII is 

reported on in [78]. 
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(a)                                                                   (b) 

   
(c)                                                                  (d) 

 
Figure 4.1.  Pictures of EvBots in various configurations.  The panels show a fully 

assembled EvBot (a), two EvBots fitted with color shields (b), An EvBot fitted with a 
tactile sensor array (c), and an EvBotII (the next generation of EvBots) [77] (d). 

 

Each robot in the colony is fully autonomous and capable of performing all 

computing and data management on board.  Most of the controller computer code 

associated with the evolvable neural controllers resides in the PC-104 and is 

maintained in MATLAB running under Linux.  For the experiments described in this 

work, robots operated using trained neural networks containing 50 to 100 neurons and 

3000 to 8000 weighted connections and a memory of network states of between 5 and 

20 time steps.  At each time step during controller operation, a single video image is 

acquired and processed.  The processed information requires 30 to 250 ANN inputs.  
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For the results presented in Chapters 6 and 7, video images were processed to 

produce 150 ANN inputs.  The data from the processed image are then given to the 

neural network application, which in turn calculates a set of actuator.  The resulting 

actuator commands are processed into PWM signals and sent to the drive wheel DC 

motors. 

 

The drive wheel motors are controlled by a BasicX micro-controller.  An RS232 

serial port interfaces the PC/104 CPU to the Basic-X on a custom PCB to control 

locomotion.  The BasicX receives actuator commands and converts them into PWM 

signals that are sent to the actual drive wheels. 

 

A physical reconfigurable maze environment was constructed for the mobile robot 

colony.  To facilitate vision-based control, the maze was surrounded by a blue 

backdrop.  Robots and other objects in the environment were also fitted with colored 

shields to aid in identification and positioning.  The entire maze environment is 

viewable from a video camera mounted above.  This camera can capture video 

streams and sequences of images and store them on a remote computer for later 

analysis.  Figure 4.2 show the physical maze environment with several EvBots. 
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Figure 4.2.  Views of the real maze environment with robots. 
 

4.2 Video Range-Finding Emulation Sensors 

In the experiments presented in this dissertation, all robotic sensing of environments 

was accomplished via video (with the exception of the early research presented in 

Chapter 3).  The trained neural networks were fed range data.  In order to make this 

transition from video to range we implemented a simple range-finding sensor 

emulation system using video images captured from the EvBot USB cameras.  This is 

a simple vision system and it is used to extract information in a form that is useful for 

mobile robot behaviors including navigation and reaction to spatial situations.  The 

goal of this work is not to develop sophisticated vision systems, but rather to make 
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use of simple methods to extract information in a form that would be presentable to a 

neural network based controller.  The system is described here to convey the nature 

and sources of information given to the neural controllers as sensor inputs. 

 

Initially, the motivation for developing the vision-based object range detection system 

was to emulate laser-range-finding sensors on the real robots so that we could begin 

to work with controllers that relied on more advance sensing capabilities.  Later it 

was found that video emulation of range-finding sensors provides an advantage over 

real range finders in that object color can be used to identify object type in addition to 

distance.  This range-finding emulation system provides an important unifying 

crossover point between the simulated and real environments.  Simulation of the 

emulated range-finding sensors is a much more feasible task than direct simulation of 

video images. 

 

The vision system takes advantage of fixed geometric elements within the physical 

maze environment to calculate the ranges and angles of walls and robots.  Each robot 

camera is attached at a fixed angle and altitude.  Maze walls are of a constant height 

so distance can be calculated from a monocular image taken from a set altitude within 

the maze environment.  In addition, each robot is fitted with a shield that has a 

colored band of fixed width.  Robot distances can be calculated from an image by 

determining the relative width of the colored bands within the image.  Likewise, 

stationary goal objects are also fitted with colored bands of fixed width.  In order to 

distinguish between robots and goal objects, robot skirts are mounted so that they will 
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always appear below the horizon in an image while goal color bands will always 

appear above the horizon.  The vision system can detect five object types.  These are 

walls, red robots, green robots, red goal objects and green goal objects.  Both range 

and angle values are reported over a spread of 48 degrees centered on the forward 

direction of the robot frame of reference.  120 by 160 pixel images were used so a 

vector of 160 range values is produced for each object type.   

 

The system works by successively decomposing a video image of fixed resolution.  

First, each pixel is identified as being red, green, black or other (all ‘other’ colors are 

ignored).  Next, the image is converted to a 2D numerical array where the index of 

each element is its xy-location in the original image, and its value is an identifying 

integer depending on the determined color of that pixel.  The matrix is subdivided 

along the horizon into upper and lower regions to distinguish between goal objects 

and robots.  The vertical sum of pixels Σp of each object type is calculated and stored 

in a separate array covering the horizontal spread of the image.  These numerical 

arrays are then fed element by element through a simple distance formula to produce 

the final vectors of ranges d for each object type  (Equation (4.1) below). 

∑
=

p
HKd       (4.1) 

Where H is the physical height of each object type and K is an empirically derived 

constant.  H and d are in length units (inches).  The final form of the data is (for each 

object type) a vector of numbers spanning the horizontal spread of the original image, 

where each number represents the distance of the closest object of that type in that 

direction.  If no object is detected, the maximum sensor range is returned.  The angle 
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of detected objects is implicit in the location of each numerical distance within each 

data vector.  Each vector spans the horizontal spread of the robot camera’s field of 

view, and each successive element represents an incremental angular step from left to 

right across the horizontal field of view.   
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(a)                                                                   (b) 

Figure 4.3.  Examples of image decomposition into vectors of range data to be fed 
into neural network controller inputs.  One vector of length equal to the horizontal 
resolution in pixels of the image is produced for each type of object in the physical 

robot environment. 
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It should be noted that object type information is not explicitly given to the robot 

neural controllers.  Controllers are only given the resulting numerical data vectors.  

All associations relating distances, angles, and object types must be learned by the 

neural networks.  Object data vectors are always presented to the networks in the 

same order so a particular scalar input resulting from the distance of an object type in 

a particular direction will always be presented to the same input.  Figure 4.3 shows 

two example robot-eye-view images and their successive decomposition into range 

data vectors. 

 

In the reported range data shown in the lower 5 panels of Figure 4.3, closer ranges 

supersede farther ranges.  If one object (or pixels thereof) is found to be closer than 

another, it shadows the further object.  This produces a consistent sensor 

representation that can be simulated in two dimensions and will be discussed further 

in the next section. 

 

It was found that feeding all 5*160 elements of the full data vector inputs into the 

neural network evolution application produced networks of large size with very long 

training times (as to make them untrainable).  In most cases, the object range data 

vectors shown in Figure 4.3 were further reduced in length by extracting the 

minimum distance over successive groups of horizontal elements.  The end results are 

sets of data similar to those that would be obtained from 5 groups of 30 laser range 

finding sensors that were selective for a particular object type (5 object types times 30 

groups gives 150 total sensor inputs).  This further reduction was performed as a 
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preprocessing step by the neural controllers and was common to both the simulated 

and real systems. 

 

4.3 The Simulation Environment  

Part of the ideology used in the development of both the simulation environment and 

the physical environment was to identify and utilize points in the simulated and real 

systems that could be used to tie them together.  Such points include sensor data 

formats, actuator outputs, and elements of calibration.  The real sensor inputs (video 

camera images) were processed to a point so that simulation would be feasible.  Here 

an architecture was implemented that allowed simulated and real controllers to 

receive sensor data and send actuator commands of the same format.  This allowed 

controllers to be developed in simulation and to be transferred directly to the real 

robots without any alteration.  Although it is generally the goal of simulation to match 

the real world as closely as possible, in this approach a conscious effort was made to 

preprocess real world sensor data into a form that would be amenable to simulation 

and at the same time provide a high level of information to the controllers.  The 

simulation environment does not duplicate raw images similar to those from the real 

robot video cameras.  Rather, it uses elements in the simulated environment to 

directly produce object range data that is in the same format of the fully processed 

data from the real cameras. 
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All objects in a simulation are represented using a 2-dimensional cellular grid.  

Simulated robot positions are stored as real valued x, y and angle triplets, but when 

instantiated into the simulated world, they are filled into the closest fit of cells.  This 

allows for the simulation of real valued speeds and rates of rotation without requiring 

the vector representation of objects.  Figure 4.4 (a) shows a graphic representation of 

a simulated world containing several simulated agents.  The smaller circular objects 

are the robot agents while the lager circular objects are stationary goals.  The black 

lines indicate stationary walls.  The positions of the goals and robots are 

automatically generated at the initialization of a particular simulation. 

 

 

 
   (a)                                                                    (b)  

 
Figure 4.4. Views of simulated environments containing robot agents, goal objects 
and walls.  In (a) robots are shown clustered around their respective goal objects.  

Panel (b) shows a graphical representation of simulated sensor data received by the 
robot agent in the lower left corner of the environment. 

 

The simulated range finding sensors return one vector of range values per each object 

type represented in the simulation.  Each range data vector spans an angular range 

constituting the field of view of a robot.  In all of the work presented in this 
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dissertation, the robot vision view span was set to be between +24 and –24 degrees 

centered on forward orientation of the simulated robot body-attached frame of 

reference (defined here to be in the positive x direction).  This span was divided into 

160 equal elements to match the resolution setting of the real robot video cameras.  

This means that each successive element in a range data vector represents an offset of 

0.3 degrees from the preceding and following elements.  The value of each element of 

each vector is the distance of the closest cell containing an object in the direction 

associated with that element.  If no objects of a particular type are found, distance 

values are set to a fixed maximum range.  For all object types, only the closest 

element associated with a direction is reported.  All other elements in that direction in 

all of the other vectors are set to the maximum range.  This effectively restricts the 

robot to a two dimensional view.  Any further reduction or processing of sensor data 

is done by the robot controllers and is common to both the simulated and real 

controllers.  Figure 4.4 (b) shows a graphical representation of sensor data plotted 

over a simulated world.  This representation is somewhat akin to what a person would 

see if he or she were looking at a picture of an aerial view of a robot in a foggy field 

with a searchlight attached facing forward.  Light rays would be blocked by the 

objects as they diverge from their source on the robot.  If one were to trace around the 

illuminated portion of such a picture, a pie-piece-like shape similar to that shown in 

the figure would result.  One such ‘pie-piece’ shape is superimposed onto the figure 

for each object type.  Also, note that the ‘pie piece’ is cropped off at a certain radius.  

This represents the maximum sensor range setting.   
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The simulated environment extracts range data from the environment and converts 

them into the same format as is reported by the video range sensors.  In addition, 

drive wheel speeds are given in physical units (in/sec).  The simulation converts these 

into motion of the simulated agents while the real robots convert them into a 

calibrated set of actual motor commands in the form of DC PWM levels.  This allows 

for the tuning of both the simulation environment and the real robot actuators to 

couple the two systems.   

 

Collisions between moving objects or between a moving object and a stationary 

object are modeled by disallowing object overlapping.  If a moving object’s next 

calculated position intersects a second object, it is not allowed to move.  Rather, the 

time step is successively reduced and the next position is recalculated and the move is 

reattempted.  This continues to the point that calculated next position is within one 

world-cell size or less.  If this still produces an overlap, the object (robot) is 

considered stuck, at least until the next simulation iteration cycle, when it is possible 

that the robot agent will back up.  This affectively models 100% friction at all contact 

points and is more restrictive than the real world.  It was found, however, that the real 

robots do become stuck when involved in a wall collision.  Robot-robot collisions in 

the real world can eventually result in one robot pushing the other out of the way.  

This is not accurately modeled in the simulation, where robots would just push 

against each other without producing any further motion.   
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Figure 4.5.  Robot differential steering model. 
 

The simulated agents model a deferential steering method of locomotion.  Each tread 

on a real robot is represented by a single point contact in the 2-dimensional 

simulation.  The simulations are necessarily discretized with respect to time with time 

step size ∆t.  The next position of each robot agent is a function of its current wheel 

speeds and of the length of the time step.  The calculations used to determine the 

simulated robot’s next position are:  

)_,_mean(_
_

*
)_,_max(
)_,_mean(

__sin

*__
*__

1

distLdistRposition
angle

distLdistR
distLdistR

w
distLdistR

tvRdistR
tvLdistL

=∆

+=∆

=

⎟
⎠
⎞

⎜
⎝
⎛ −

=

∆=
∆=

−

βα

αβ

α
   (4.2)   

where L_v, R_v, ∆t and w are the left wheel linear velocity, the right wheel linear 

velocity, the time step size and the robot wheel-to-wheel body width respectively.  

The resulting direction of position offset, magnitude of position offset and angular 
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offset of the next position are given by α, |∆_position| and ∆_angle respectively.  

Figure 4.5 shows the results of the next position calculations in (4.2) for a robot agent 

wheel set with respect to a body-attached frame of reference.  Note that although the 

EvBots actually have four drive wheels, the front and back wheels always act in 

tandem (like drive wheels in an army tank tread), and do not steer individually.  

Hence, the two wheels acting together on one side of a robot can be modeled as a 

single wheel or a single tank tread.  The interface between the controllers and the real 

robot drive systems allows for calibration at a fine level:  the real robots can be 

calibrated to match the motions of their simulated counterparts and vice versa for a 

given speed command.  This allows for a great deal of flexibility in modeling 

methods and in actuator command formats.   

 

4.4 Simulated Vs.  Real Sensors 

Figure 4.6 (a) shows an image of the real maze environment with a graphical 

representation of real sensor readings superimposed onto the image.  Here, the sensor 

data were gathered by a robot in the center of the maze.  In part (b) of Figure 4.1, the 

environment configuration is duplicated in simulation.  Again, sensor data were taken 

from the center of the simulated maze and from the same orientation as the real robot 

in the real maze.  The simulated sensor data were also superimposed onto the 

simulated maze graphic.  The graphical representation of the sensor data is similar to 

that of Figure 4.4 in the previous section.  Additional comparative real and simulated 

sensor data examples are shown in panels (c) to (f) in Figure 4.6. 
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(a)                                                                            (b) 

 

 
(c)                                                                            (d) 

 

 
(e)                                                                           (f) 

Figure 4.6.  Comparative real and simulated sensor plots.  Real sensor readings are 
plotted on images of the real maze environment (a) (c) (e)  These are compared to 
simulated sensor readings generated in the simulation environment (b) (d) and (e).  

For each image pair, the real and simulated worlds were configured similarly. 
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To investigate and quantify the fidelity of the video-range emulation sensor system, 

the sets of real and simulated sensor reading were compared.  A set of 10 images 

similar to those in Figure 4.6 (b) (d) and (f) were taken of the real maze environment 

with real robots.  These were correlated with sensor data produced by the robot in the 

center of the maze in each image.  The maze environment configurations were then 

duplicated in the simulation environment and simulated sensor readings were 

calculated.  The real and simulated sensor reading data sets were compared to 

generate a measure of quality of the real sensors.  The real vision based sensors 

produced and error of 21.0% when compared to simulated values.  This is about 

12.44% error with regard to the maximum range of the sensors.   

 

This sensor system was primarily used for robots being controllers by neural 

networks trained to play a competitive team game (Capture the Flag).  In that case, 

rather than seeing red and green, robots see “my color” and “opponent color”.  This 

was achieved by swapping the red distance sensor inputs and green distance sensor 

inputs for controllers on opposing teams both during training, and during testing. 

 

4.5 The Evolutionary Neural Network Architecture 

The vast majority of ER research involves the evolution of artificial neural networks 

(ANN).  Some other robot controller structures have been used and have yielded 

preliminary results.  For example A limited amount of ER work has focused on the 

evolution of genetic programming (GP) structures for robot control [54][55].  GP 
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syntactic constructs may restrict the controller search space so that the evolution of 

controllers for general complex tasks is not feasible.  Other evolvable control 

structures such as Q-learning, evolvable state transition structures and evolvable logic 

hardware have seldom been used in ER work.  In the research reported on in this 

work, ANN controller structures were evolved.  ANN controller structures provide a 

continuous search space and are easily encoded into a variety of genome 

representations.   

 

Because the dynamics of behavioral robotics tasks are not well characterized, we 

believe it is important to apply artificial evolution on a broad relatively unrestricted 

network morphology search space.  Much ER work to date has made use of small 

static networks [53][45][50][22][40][79][67].  The results reported on in those works 

show that small networks are evolvable to perform simple tasks, but it is not clear that 

those results can be generalized to the complex case.  Other researchers have used 

more complex networks [15][29][17][90] and it is this path that is pursued herein.  In 

several case studies, networks containing recurrent connections were shown to 

significantly outperform feed forward networks [41].  We have developed a 

generalized neural network architecture capable of implementing a very broad class 

of network structures.  Networks are not limited to any particular layered structure 

and may contain feed forward and feedback (recurrent) connections between any of 

the neurons in the network.  Networks may contain mixed types of neurons, and a 

variable integer time delay may be set on the inputs of any neuron in the network.  

Internal neuron activation function types include sigmoidal, linear, step-threshold, 
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and Gaussian radial basis functions.  For purposes of population based evolutionary 

training, populations of heterogeneous robot controller networks can be specified, 

altered, and evaluated within an artificial evolution environment.  In the next section, 

a formal description of the evolvable neural architecture used in this research is given.   

4.5.1 Network representation 

The connectivity and weighting relationships in a given network are completely 

specified by a single two-dimensional matrix W of scalar weighting values.  

Information specifying neuron types is given in a vector data structure N with one 

formatted field per neuron.  All inputs, internal neurons and outputs are considered to 

be types of neurons as far as the network specification matrices are concerned.  Each 

of these is given a field in N to make a total of N fields.  Current and past network 

inputs and neuron functional levels (outputs) are stored in an ordered matrix, I.  Each 

row of I contains the inputs and activations associated with a particular time delay 

starting with the current time (delay of 0) and progressing into the past with 

successive rows to the maximum time delay supported by the network.  The 

maximum level of time delay supported by a network is specified by a scalar integer, 

δ.  This makes I a matrix of constant size determined by δ and N with element values 

that vary with time.  This formulation allows for the efficient implementation of a 

variety of evolutionary training methods and for the formulaic specification of a very 

broad class of network topologies. 
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Activation functions take the form: 

)))(,(,()( ntfuf nnn τiw=     (4.3)   

Where , w}..1{ Nn ∈ n is the nth row of the weight matrix W, i(t,τ(n)) is the τth row of 

the input/activation matrix I at time t, and fn is the activation function type specified 

in the nth field of N.  The time delay, τ (n) is also defined in the nth field of N and is 

written as a function of n.  In the majority of neuron activation functions, u takes the 

form of the weighted sum (dot product) of the inputs and the associated weights:  

∑
+

=

=
1

1

N

m
mmiwu             (4.4) 

where N+1 is the width of W and of I.  These activation function types include 

sigmoid, linear and step functions.  Note that biases are accounted for by the addition 

of a column of inputs in I that are always 1, and by an additional column in W of 

associated weights.  For the radial basis activation functions, u is the Euclidian 

distance between w and i in N-space given by: 

∑
=

−=
N

m
mm iwu

1

2)(      (4.5) 

where w and i have been reduced in dimension to match that of the non-zero 

weighting connection elements of w.   

 

Network inputs are considered to be linear neurons with all zero connecting weights 

except for a single self-self connection with a unit weight.  Networks with more 

complex ‘input functions’ are possible but were not explored in this work.  There is 

no distinction between hidden and output neurons except that outputs are specified as 

such and their function outputs can be selected and read from the matrix I after a 
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network updating cycle.  The input-output relation for a given network can then be 

specified as follows by: 

))(()1( WN,,II tNetworkt =+           (4.6) 

and, 

)(t 1,1+⊂ io      (4.7) 

Where o is a vector of values from specified output neurons and is a sub-set of the 

first row of the new I(t+1).  Initially, the network inputs are read into the first 

elements of the first row vector of I(t).  The functional Network calculates the outputs 

of each neuron specified in N in order, placing resulting values in successive elements 

of I.  The values of I are thus altered by Network during calculation of the network.  

The resulting state of I is considered I(t+1) after shifting each row of I to allow for 

the incrementing of time.  Specifically, the functional Network can be expanded as 

follows: 
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where L is the number of external inputs into the network and i’(t+1, τ(m)) is the 

input/activation vector containing elements of i(t+1) up to the mth element and 

elements of i(t) in the remaining portion.  δ is the maximum level of time delay 

memory explicitly supported by the network.  An ordered neuron update sequence 

such as this is required because networks containing arbitrary feedback connections 

can be made to produce different outputs simply by altering the order in which 
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internal neurons are activated.  Note that the first L elements of the matrix in equation 

(4.8) could also have been written in the form of activation functions but since their 

associated functions are linear with a single unit weight, they remain unaltered by the 

calculation iteration sequence. 

 

It should be noted that a particular network’s theoretical memory limit is greater than 

the explicit memory length δ.  For a network with only feed forward connections, the 

maximum possible memory is given by the length of the longest sequence of 

connected neurons terminating in an output multiplied by δ.  The dynamics of 

memory resulting from connectionist systems is closely (and perhaps inextricably) 

coupled with network performance.  It is unlikely that networks developed in this 

work evolved behaviors that approached their theoretical memory limit.  Nonetheless, 

we wanted to implement a controller network architecture that would provide at least 

the possibility of development behavior that involved memory. 

4.5.2 Graphic Representation of Neural Networks 

Figure 4.7 shows two evolved networks from different populations.  In the figure, 

network inputs are shown on the right while driving motor outputs are shown on the 

left.  The two motor outputs are used for differential steering control of the mobile 

robots upon which the evolved controllers in this research were implemented (the 

EvBots [76] [77]).   
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(a)                                                           (b) 

 
Figure 4.7.  Two examples of evolved neural networks.  The network in panel (a) has 
35 inputs, while the network in panel (b) has 150 inputs.  Both example controllers 
networks have two motor outputs that deliver speed commands to the robot’s drive 

motors. 
 

In the graphic representations of the neural networks, neuron positions are calculated 

as a function of degree of input connections and relative neuron order in the ANN 

representation structure.  The representation used for calculation and evolution of 

neural networks is discussed in the next section of this chapter.  Here, we briefly 

discuss the format of the graphic representation to clarify the structural 

representations in Figure 4.7.  It is important to note that the selection of a particular 

graphic representation has no effect on network function and serves only to provide a 

human observer with some sense of a network’s connectivity relationships.  Each 

neuron is given an integer order number in relative to its position within the 2 
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dimensional connectivity matrix W.  Each neuron position in the graphic 

representation is dependant on that neuron’s input connections: the input originating 

from the neuron or sensor connection with the highest order number determines 

position.  The greater the order number is, the further to the right within the overall 

structure) the neuron will be drawn.  In the case that two or more neurons have 

highest numbered inputs from the same neuron, they are stacked from bottom to top 

in their order of representation numbering, and with a slight offset from left to right.  

This graphic display format provides for the illustration of some characteristic 

patterns that arise in large arbitrarily connected networks with many inputs.  For 

instance, a network that had a layered structure would appear as such.  Also, a 

network that has no recurrent connections but is otherwise randomly connected will 

have a cone-like distribution of its neurons.  The networks in figure 4.7 have both 

forward and backward connections.  This gives rise to a sort of oval distribution of 

neurons.  Note that the overall cone shape of the connections is due to the large 

number of input connections, which always appear in a vertical layer on the left.   
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Figure 4.8.  Here a fully evolved controller network is shown in several 
magnifications. 

 

Figure 4.8 shows the depth of complexity possible in the evolved neural controllers.   

This network is of the same type as those shown in Figure 4.7.  Here, though, the 

internal neurons are spread over a greater distance in the vertical dimension.  The 

figure shows two successive magnifications of the connectivity structure of the 

network.  
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4.5.3 Network Representation and The Genetic Algorithm 

These generalized architecture neural networks are intended to be trained using 

stochastic and evolutionary computing methods.  Such methods are often used for 

neural network applications in which a well-defined error function is not known.  The 

words “evolution” and “training” are used interchangeable here.  This use is 

representative of the evolutionary process being used as a method to implement 

reinforcement training or learning in a population of neural network controllers. 

 

Behavioral robotics neural network based controllers are prime examples of systems 

where it is difficult to exactly define error metrics for determining the quality of the 

network output.  For example, we may want to train a mobile robot controller to 

follow a corridor without hitting the walls.  In this case, the behavior of the robot is 

evaluated, not the output of the neural network.  There is no defined training input-

output data set.  The desired network output is in fact not known; hence it is not 

possible to formulate error measures for error back propagation (BP) based training 

algorithms.  Even if desired outputs were known for a given set of inputs, analytical 

error BP methods require that the network structure be simple enough to formulate 

functional equations that can be analytically differentiated in an automated fashion.  

The complexity of implementing BP on networks of arbitrary structure would be 

quite high: possibly beyond the point of tractability.  In addition, BP searches a given 

network’s weight space, but does not search network topology space.  Genetic and 

Evolutionary algorithms offer and alternative to error back propagation training 
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methods and can be formulated to make use of behavioral fitness evaluation for 

selection. 

 

In this section, the genetic representation and algorithm use to evolve the controller 

networks for this research are discussed.  The training fitness selection function used 

to drive the selection process is the subject of the next chapter. 

 

The genetic algorithm used in this research acts directly on the data structures that 

encode the neural networks.  There is no secondary encoding into a symbolic 

chromosome.  This means there is necessarily a one to one correspondence between 

the genome and possible neural structures that can be supported by the neural 

network application.  If a certain class of structures is less likely to occur in the 

genetic space, it is equivalently less likely to occur in the network space.  Although 

this is the case with most GAs that operate directly on an ANN weight set, it is not 

necessarily so for cellular encodings such as the ones used in [15][12][24].   

 

As discussed in Section 4.5.1 above, the connectivity and weighting relationships in a 

given network are completely specified by a single two-dimensional matrix W of real 

valued scalar weights.  Additional information specifying neuron types and time 

delays is given in a data structure N with one formatted field per neuron.  W and N 

from the basis of the genetic encoding for each network.  Formally, the genome 

(sometimes referred to as a chromosome) C, for a network can be specified by the 

two dimensional matrix of real numbers.   
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]:[ NWC ′=                  (4.9) 

where N’ is a matrix of scalars extracted from the formatted data structure N. 

 

During evolution, networks are mutated in three ways.  First, connection weight 

values can be perturbed.  Second, connections can be added or removed.  Finally, 

neuron units can be added or removed. Mutation of a network can be formalized by 

the compound relation   

)))(((' CC wcs MMM=              (4.10) 

where C is the chromosome of the parent network and C’ is the resulting mutated 

offspring network chromosome.  Mw Mc and Ms are genetic operators that mutate the 

weights, the connections, and the neuron structure of the network respectively.  Any 

or all of the different types of mutation can occur during propagation.   

 

Populations of 40 networks were evolved. Each generation consisted of a competitive 

tournament of games played between the controllers in the evolving population.  The 

genetic algorithm applied in this work used 50% selection and replacement.  

Members of the fittest 50% of the population were mutated to create one offspring 

each.  These offspring then replaced the least fit members to make the next 

generation.  Single time-elitism was also used to allow the fittest individual from the 

two generations back to be included in the current generation.  For all of the evolved 

ANN controllers populations reported on in this work, mutation rates were set at 25% 

while weight mutation magnitudes were set to be in the linear distribution (-1, 1).  In 
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addition, during mutation networks had a 70% chance of adding or removing a 

neuron and a 70% change of adding or removing an arbitrary connection and 

associated weight.  All networks had a fixed number of inputs (150 for this work) and 

a fixed number of outputs (2 for the robot wheel actuators).  Networks had between 

40 and 100 neurons and on the order of 5000 arbitrary feed forward and feed back 

connections during training.  Network size was not explicitly constrained and 

variations in size reflect differences arising due to selection. 

 

A note about the controller search:  The ANN controller space is a variable dimension 

real-valued space that is continuous at each n-dimensional level and possibly 

discontinuous between dimensional levels.  (Adding and removing neurons and 

connections introduces the variable dimensionality.)  As with any space with real-

valued variables, our controller space is uncountably infinite.  Also, in the general 

case and for non-trivial behaviors, the proportion of fit solution candidates in the 

space is (most likely) infinitesimally small.   

 

4.6 Conclusion 

In this chapter, the major elements of the CRIM evolutionary robotics research test-

bed were discussed.  These included 1) a colony of real robots, 2) a vision based 

range-finding sensor system, 3) a physical reconfigurable maze environment, 4) a 

closely coupled simulation environment that simulates multiple robots, the vision 

based sensors, and the maze environment, and 5) an evolutionary neural computing 
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environment that supports the evolution of populations of ANN-based behavioral 

mobile robot controllers. 

 

Also, results comparing simulated and real vision based range-finding sensor values 

were presented.  It was found that the real vision system generated an approximately 

15% error or noise level when compared to similar noiseless simulation sensor 

values.  As will be seen in the next two chapters, evolved controllers were robust 

enough to compensate for this level of error when transferred from simulation to 

reality.  
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CHAPTER 5.  EVOLUTION OF ROBOT NEURAL 
CONTROLLERS USING COMPETITIVE FITNESS 

FOR SELECTION 
 

In this chapter a fitness selection metric (fitness function) for competitive team robot 

tasks is defined and used to evolve populations of neural network controllers to 

operate teams of mobile robots playing the game Capture the Flag.  The function is 

based on relative competitive selection.  At each generation, a tournament of games is 

played involving each of the members of an evolving population.  A bimodal fitness 

function is used.  The initial mode of the fitness function accommodates the Bootstrap 

Problem early in training by selecting for basic a motive behavior.  This basic motive 

behavior is defined to be the ability to travel half way through the robot’s 

environment.  This definition reflects human bias and requires a degree understanding 

of the robot and system dynamics to formulate.  However, it is desirable to limit the 

amount of human bias needed to evolve complex controllers because such bias can 

greatly limit the controller search space.  In the case of relatively complex robot tasks, 

human biased and specialized hand formulate fitness functions can in effect force 

evolving controller populations to converge to predefined solutions.  To remedy this, 

later in training, selection is based on win/lose information only.  This is 

accomplished by defining a second mode to the fitness function.  The second mode 

uses only aggregate task completion to calculate fitness.  Controllers in the population 

that are able to win games are not affected by information from the initial mode.  

Once controllers evolve the ability to win games, they are allowed to regress with 
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regard to the first hand-formulated selection mode.  So long as they continue to win 

games, they will continue to be selected and propagated based on high level task 

completion.  Hence, later evolution continues with less human bias than if a single 

mode fitness function were used.   

 

In Section 5.1, the team robot game used for this research is briefly described.  In 

Section 5.2, a formal definition of the bimodal fitness function is given.  Section 5.3 

defines experimental and evolutionary conditions used to evolve the populations of 

controllers.  Sections 5.4 and 5.5 present training data collected over the course of 

evolution of controller populations.  In Section 5.6 evolved behaviors are analyzed 

qualitatively and in Section 5.7 evolved controllers are tested in real robots.  

 

For this research, a number of lengthy and computationally expensive evolution runs 

were conducted.  The evolution runs required three to four weeks of computation time 

each, and were conducted on several desktop computers using 0.7Ghz and 1.4Ghz 

processors.  Data from four populations of controllers evolved under different 

conditions are presented.  The evolution conditions compare environmental-

incremental and “all-in-one” evolution.  In addition, and secondarily, two forms of 

opponent selection for games within the generational tournaments were investigated.  
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5.1 The Task: Robot Capture the Flag 

Before giving an explicit formulation of the bimodal relative competitive fitness 

function, we define the competitive game used in this research. 

 

Populations of robot controllers were evolved to play a robot version of the 

competitive team game Capture the Flag.  In this game, there are two teams of 

mobile robots and two stationary goal objects.  All robots on team one and one of the 

goals are of one color (red).  The other team members and their goal are another color 

(green).  In the game, robots of each team must try to approach the other team’s goal 

object while protecting their own.  The robot which first comes within range of its 

opponent’s goal wins the game for its team.  The game is played in maze worlds of 

varying configurations.  In general, larger environments with more walls and 

corridors are more challenging.  Robot controllers were evolved and tested in various 

world configurations.   

 

There are no explicit rules for this game except that the robot first coming in contact 

with the goal object of its opponent’s team ends the game with a win.  The only other 

constraint is that robots are not allowed to break any physical laws.  This can lead to 

the evolution of some seemingly odd strategies, especially early in the evolutionary 

process.  For example, in a game in which one robot on a team crashes into its own 

goal, but another on the same team finds the opponent’s goal will still result in a win 

for that team.   
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5.2 The Bimodal Fitness Selection Function 

This research demonstrates the use of a bimodal fitness function.  The function is 

applied to competitive fitness selection in a population of evolving robot controllers.  

The function is designed to accommodate sub-minimally competent initial 

populations early in evolution, but to relax selection to be based on overall 

competitive success/failure or win/lose information as populations become minimally 

competent.   

 

Here, the term “sub-minimally competent” means that controllers in a population 

have no detectable ability to complete the target behavior fully.  Also the terms, 

fitness function, selection function, selection metric and so on, are all used 

interchangeable.  These terms refer to the function that is applied to the behavior of 

each individual in a population in order to measure its relative fitness for survival and 

selection during propagated to the next generation.   

 

Selection algorithms that base fitness purely on high level success or failure of 

complex behaviors have much greater potential for generalization to complex 

behaviors than specialized hand-tuned functional fitness functions.  In the ideal case, 

controllers are selected based only on frequency of completion of a given high-level 

task.  Success/failure fitness selection of this type represents an aggregation of 

evaluation of all sub-behaviors into a single all-encompassing measure.  This type of 

selection is important to the future application of ER to difficult real-world problems 
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because it can be applied toward the evolution of behaviors that humans do not 

understand well enough to formulate functional fitness metrics for. 

 

In the competitive evolution case, evolving controllers continue to improve and thus 

produce a changing fitness landscape over the course of evolution for the population 

as a whole.  This phenomenon of fitness landscapes being subject to change due to 

evolving elements within the evolutionary process is sometime referred to as the “Red 

Queen Effect” in evolutionary computation.  Competitive selection can allow for the 

continued ramping up of task difficulty due to improvements of competing members 

in a population.  As an individual becomes more competent, it represents more of a 

challenge to other members in the population, and visa versa. 

 

The problem with pure success/failure based fitness selection is that in the initial 

stages of evolution, random seed populations often show no detectable level of fitness 

to perform an entire complex task or behavior.  They are sub-minimally competent.  

This is commonly referred to as the Bootstrap Problem in ER and related research 

fields.   

 

Rather than trying to form a complicated function to optimize a specific behavior, we 

formulated a function with two modes of selection.  In the first mode, controllers are 

selected so that they have the potential to complete the overall behavior a small 

fraction of the time.  Controllers need not be well evolved to complete the task.  They 

must only be able to complete the task on occasion (win a game in this case).  Once 
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this is achieved, fitness is based on pure success or failure.  This reduces the amount 

of system knowledge needed to formulate the training metric.  Designers must only 

be able to identify a minimal level of performance that would allow robot controllers 

to produce a detectable level of completion of the overall task.  Once this level of 

fitness is achieved, further evolution can be based on aggregate success or failure of 

the task.  The designer must also be able to design a function that will detect 

successful overall completion of a given task.   

 

In summary, we implemented a training function with an initial mode that 

accommodates sub-minimally competent seed populations and a second mode that 

selects for aggregate fitness based only on overall success or failure.  Additionally, 

we applied this selection metric in a relative competitive form in which controllers in 

an evolving population compete against one another to complete their task -to win a 

competitive game. 

 

Formally, in this research fitness F(p) of an individual p in an evolving population P 

( P∈p ) takes the general form: 

)()()( 2mode_1mode_ pFpFpF ⊕=         (5.1) 

where Fmode_1 is the initial minimal-competence mode and Fmode_2 is the purely 

success/failure based mode.  Here ⊕  indicates dependant exclusive-or: if the 

success/failure based mode’s value is non-zero, it is used and any value from Fmode_1 

is discarded.  Otherwise fitness is based on the output of Fmode_1.   
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Fmode_1 returns only negative values in the range {-a, 0} while Fmode_2 returns only 

positive values in the range {0, a}.  This insures that successful completion of the task 

achieved by an evolving individual during a generation will supercede the fitness of 

any population member not fully completing the task.  This also gives an indication 

of which mode of the metric is in operation for any given fitness calculation. 

 

The first mode of the fitness function operates primarily during early training.  Its 

purpose is to select for minimal competence to successfully complete the task (win 

the game) in a detectable fraction of the trials, and in a finite amount of time.   

 

We define a minimal competence for this game task to be the ability to travel half 

way through the current training environment, (or more precisely, the ability for at 

least one robot of a given team to travel a distance equal to half the length of the 

environment’s greatest dimension).  The rational is that for this task, and many other 

mobile robot tasks, a robot that can travel a minimal distance through its environment 

has the possibility of completing a more complex locomotion-based task.  A robot 

controller will maximize this mode of the fitness function if it can travel halfway 

through its environment.  Further navigation is not rewarded.  The general form of 

mode 1 is as follows: 

msFF dist ++=mode_1      (5.2) 

where Fdist calculates a penalty proportional to the difference between distance d 

travel by the best robot on a team, and the minimal competence distance D: 
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α
    (5.3) 

D was defined above as being half length of the current training environment’s 

greatest dimension and α is a constant of proportionality.  In Equation (5.2), s and m 

are penalty constants applied in the case that robots on a team becoming immobilized 

or stuck (by any means), and in the case of controllers producing actuator output 

commands that exceed the range of the actuators (the wheel motors) respectively.  

Note that m is unrelated to performance of any particular task, but produces selective 

pressure for ANN controllers that generate actuator commands in ranges that the 

motors are capable of producing.  Controllers that produce out-of-range actuator 

commands still function, but the actuators produce outputs at the edges of their ranges 

as near as possible to the given out-of-range command. 

 

Fdist and s required some level of knowledge on the part of the designer to formulate.  

Hence, human bias has not been completely eliminated and is injected into the 

selection process.  Even so, this mode need only select for robot teams that have the 

potential to win games some of the time, however poorly.  Any team controller 

wining a game will have a fitness based only on Fmode_2 and will not be subject to any 

penalty from mode 1 of the fitness function.  This means that the human-bias induced 

constraints introduced by Fmode_1 are lifted as evolving populations evolve past the 

minimal competence level.   

 

The second mode of the fitness function is classified as aggregate (using the 

classification presented in Chapter 2) because it produces fitness based only on 
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success or failure of controllers to complete the task at hand (competitive team game 

playing).  The formulation of the success/failure mode (Fmode_2) of the fitness function 

is determined by the competitive nature of the training algorithm, and the behavioral 

task.  In this research, competitive games were played, so success or failure was 

determined by winning or losing games.  In each generation, a tournament of games 

involving all the individuals in the population was conducted.  Each individual played 

two games against one other member of the population (the opponent).  The opponent 

can be selected in various ways.  For example, the opponent could be selected at 

random from the population.  The possible outcomes of these games incurred 

different levels of fitness and are summarized in Table 5.1 below. 

 
Table 5.1.  Fitness points awarded by the aggregate success/failure mode, Fmode_2, for 

pairs of reciprocal games during a generational tournament.  
 

Game Pair Outcomes Fitness Points Awarded 
win-win 3 

win-draw 1 
win-lose .5 

draw-draw 0  (Fmode_1 dominates) 
draw-lose 0  (Fmode_1 dominates) 
lose-lose 0  (Fmode_1 dominates) 

 

Note that in cases where no win occurs Fmode_1 is used to determine a negative fitness 

value.   

 

This function operates in the context of a 50% selection and replacement evolutionary 

algorithm (EA) (see Chapter 4, Section 5.3.2).  Each controller receiving a fitness 

ranking in the fittest 50% of the population produces a single mutated offspring that 

replaces one individual in the least fit 50% of the population.  An important 
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ramification of this is that in the case that 50% or more of the population receives a 

positive fitness value, then selection will be based entirely on success/failure 

information and the minimal competence mode will have no bearing, i.e. all 

individuals not achieving success will be eliminated. 

 

5.3 Evolution Conditions 

5.3.1 Incremental Verses All-in-one Evolution 

In this section and the next, experimental evolutionary conditions used to evolve four 

populations of robot controllers are discussed.  In particular, “all-in-one” evolution 

was compared to environmental-incremental evolution.  Additionally, two forms of 

tournaments were used.  These were 1) tournaments in which every controller played 

against the same competitor throughout the tournament, and 2) tournaments in which 

every controller played against a different randomly selected controller. 

 

Incremental evolution in ER can involve incremental fitness selection metrics, 

incremental environment difficulty, or a combination of both.  Although the use of 

incremental training fitness selection functions has been shown to produce functional 

controllers for moderately complex tasks [39][40][24][55][38], in most cases the 

process of incremental fitness function specification has required detailed knowledge 

of the dynamics of the task to be learned (or evolved).  Such functions curtail the 

controller search space to the degree that resulting evolved controllers cannot be 

considered to have evolved truly novel controller strategies.  Rather, resulting 

 102 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

controllers represent an optimization of a control strategy formulated by the designer 

of the incremental fitness function, at least to a large degree.   

 

The case of environmental-incremental evolution is not so clear-cut.  While it is true 

that the designer must use some knowledge about the dynamics of the desired 

behavior to construct environments of increasing difficultly, this does not necessarily 

inject globally restrictive human bias into the controller search space. 

 

To differentiate the effects of “all-in-one” evolution from environmental-incremental 

evolution four populations of robot controllers were evolved to play the game 

Capture the Flag.  Two populations (population 1 and population 2) were evolved 

entirely in a very challenging environment with many walls and corridors.  These 

“all-in-one” populations were evolved entirely in World #7, in Figure 5.1 below.  

Two other populations (population 3 and population 4) were evolved in a set of 

worlds of incremental difficulty.  These environments ranged from a simple 

environment with no dividing walls, to a vary challenging environment of larger size 

with many walls and corridors.  The sequence of environments is shown in Figure 

5.1. 
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 W orld #1 W orld #2 W orld #3 W orld #4 

W orld #5 W orld #6 W orld #7 W orld #1 

 
 

Figure 5.1.  The sequence of maze world configurations used for the evolution of 
populations utilizing environmental-incremental evolution.  “All-in-one” evolutions 

were performed entirely in world # 7. 
 

The environment incrementation process was automated and based on a measure of 

whole-population fitness: this was the frequency of wins over the course of a single 

tournament.  It should be noted that this metric was used only to increment the 

environment complexity and was not directly involved with selection of individuals 

or propagation of the population at any generation.   

 

Selection in the incremental and non-incremental cases was performed using the 

bimodal fitness selection function described in Section 5.2.  All parameters related to 

initialization, selection, mutation and propagation were the same in all four 

populations. 
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5.3.2 Tournament Organization 

One tournament of games was played every generation.  The results of that 

tournament were used to calculate the relative fitnesses of each of the controllers in 

the evolving population using Equation 5.1.  At the beginning of each tournament, a 

set of initial positions for all the robots on both teams, and the stationary goal objects 

was randomly generated.  That set of initial positions was then used for every game in 

the current tournament.  This was done to limit selection resulting from wins due to 

“lucky” starting positions (as opposed to evolved skills).  In each tournament, each 

member of the population played only two games for scores.  For those two games, 

an opponent was selected from the current population.  In the four evolved 

populations discussed in this chapter, two different types of opponent selection were 

use.  In two of the evolved populations, an opponent was selected from the current 

population at random, and that same opponent was used in every game throughout the 

tournament.  This case will be referred to as the “constant opponent” case.  In the 

other two evolved populations, a new opponent was randomly selected for each game.  

That case will be referred to as the “random opponent” case.   

5.3.3 Genetic Algorithm and Population Settings 

The various permutations of incremental vs. non-incremental and single constant 

opponent vs. random selection of opponents lead to four evolutionary conditions.  

These are 1) Evolution in a single difficult world with a single constant opponent 

being used through a tournament, 2) Evolution in a single difficult world but with a 

new opponent being randomly selected for each of the games in a tournament, 3) 
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Evolution in worlds of incremental difficult with a single constant opponent being 

used through a tournament, and 4) Evolution in worlds of incremental difficulty with 

a new opponent being randomly selected for each of the games in a tournament.  

Populations were evolved under each of these conditions. 

 

In each evolving population, all parameters and conditions except those listed above 

were kept constant.  Each evolution was initialized with the same random seed 

population of neural controllers.  Populations were of constant size 40 throughout 

evolution.  Table 5.2 contains a list of other important evolution settings and 

parameters.   

 
Table 5.2.  Parameter settings common to all of the evolved populations. 

 

Parameter Setting 
Population Size 40 
Sensor range 60 
Sensor inputs neurons 150 
Initial Internal neurons  60 
Chance of adding or removing a 
single neuron (during network 
mutation) 

70% 

Weight initialization range [-1 1], linear distribution 
Weight mutation magnitude range [-1 1], linear distribution 
Weight mutation rate 25% 
Initial feedforward connectivity 
level 

60% 

Initial feedback connectivity level 20% 
Chance of adding or removing a 
single connection (during network 
mutation) 

70% 

N-elitism level (per generation) Single best from previous 
generation 

Population replacement rate (per 
generation) 

1/2 + 1/40 
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Each population was evolved to 450 generations.  Populations were evolved in 

simulation.  Each evolution required approximately 3 to 4 weeks of computation time 

on a 1.4 GHz Pentium 3 Processor.  Approximately 80% of the computation time was 

spent simulating the vision based sensor inputs.  All other aspects of the simulation, 

including neural network calculation, population selection and mutation, and 

simulation of kinetics and physical interactions were accomplished in the remaining 

20% of the computation time.  All random numbers were generated using the 

MATLAB 5.3 random number generator.  A single random seed was used to initialize 

each evolutionary run.  Because the amount of computation time required to evolve 

each population was quite large, only one random seed population was investigated. 

 

All robots on a team have homogeneous controllers.  This means that one network 

from the population is copied onto all of the robots on a team.  This team then 

competes against another team containing copies of another controller network. This 

does not preclude cooperative behavior, because each robot occupies a different 

position and receives different sensor values. 

 

The current chapter and the next chapter present results generated primarily using the 

simulation environment.  Note that controllers from the fully evolved populations 

were tested using teams of real robots in a physical maze environment to verify 

controller performance qualitatively.  Those results are discussed at the end of this 

chapter. 
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5.4 Evolution of controller populations 

In this section, training data collected over the course of evolution are presented for 

each of the four evolutionary conditions described in the previous section.  These 

conditions are summarized in Table 5.3 below.  Note that the words “evolution” and 

“training” are used interchangeable in this chapter.  This use is representative of the 

evolutionary process being used as a method to implement reinforcement training or 

learning in a population of neural network controllers. 

 
Table 5.3.  Summary of four evolution conditions. 

 

Population 
Name 

Evolution 
Environments 

Tournament 
format 

Training Data 
Figure 

Population 1 Single world Constant opponent Figure 5.2 
Population 2 Single world Random opponent Figure 5.3 
Population 3 Incremental worlds Constant opponent Figure 5.4 
Population 4 Incremental worlds Random opponent Figure 5.5 

 

The data for the comparative evolution conditions are shown in four consecutive 

figures, each of which is of the same format (Figure 5.2, Figure 5.3, Figure 5.4, 

Figure 5.5).  Each figure contains three panels.  In every panel of all four figures, 

generation or epoch number is shown along the x-axis.  The top panel in each figure 

shows relative fitness values used for selection as measured by the bimodal fitness 

selection function.  The y-axis indicates fitness’s for the best, the average, and the 

least fit controller network of the current population.  Note that the top panel plots the 

population best, average and worst fitness curves together on the same axis.  The 

fitness selection metric generates a relative ranking of individual controllers in a 

population, rather than an absolute one.  Because of this, the absolute quality of 
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evolved controllers cannot be determined from the reported relative fitness of the best 

individual.  As soon as controllers are able to win games, it is possible that one of the 

controllers will be able to win its games in competition with other individuals in that 

population and receive the highest possible tournament score.  This indicates that the 

winning controllers are more competent relative to the losing controllers in a given 

population, but does not indicate absolute competence.  In order to demonstrate 

improvements in overall population fitness, a second purely passive fitness measure 

was used and is described in the next paragraph.  Later, in Chapter 6, a post evolution 

absolute fitness metric involving competition against controllers of know abilities will 

be discussed.   

 

The center panels of Figures 5.2 to 5.5 indicate the total number of wins achieved by 

all members of a population during a particular generation.  For the tournament 

structure used in this research, and with a population size of 40, the maximum 

possible number of wins per tournament is 80 since each controller plays two games 

for a score every tournament.  The metric is purely passive in the cases of populations 

1 and 2 and has no effect on fitness selection whatsoever.  In the evolution of 

populations 3 and 4, the world difficulty was augmented when the population was 

able to win at least 18 wins.  This threshold level of wins is indicated on each plot by 

a horizontal dashed line.  This threshold also corresponds to the number of wins in a 

population per tournament at which selection is dominated by the win-lose selection 

mode of the bimodal fitness function.  Again, the wins per tournament metric is not 

used in fitness evaluation and selection, but in the environmental-incremental 
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evolution cases, it did have an effect on the course of evolution because it was 

involved in the automatic incrementation of training world difficulty.  In the second 

panel of each of the four figures a rolling average is plotted along with the 

unaveraged data.   The averaged values are used for the automatic incrementation of 

training world difficulty in populations 3 and 4. 

 

The world difficulty level is shown in the third panel of each of Figures 5.2 to 5.5.  In 

populations 1 and 2, the world difficulty level remains at 7 throughout the evolution 

(the ‘all-in-one’ cases).  The world difficulty levels correspond to the world numbers 

in Figure 5.1.  Populations 3 and 4 cycled through the set of incremental world 

several times during the course of evolution.   
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Figure 5.2.  Training data from Population 1:  Evolved in a single difficult world and 

using a single constant opponent for all games in a tournament.   
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Figure 5.3.  Training data from Population 2:  Evolved in a single difficult world and 

using random opponent selection for each game in a tournament. 
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Figure 5.4.  Training data from Population 3:  Evolved in incremental worlds and 

using a single constant opponent for all games in a tournament. 
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Figure 5.5.  Training data from Population 4:  Evolved in incremental worlds and 

using random opponent selection for each game in a tournament. 
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5.5 Discussion of evolved populations  

First, we will discus the “all-in-one” cases.  Figures 5.2 and 5.3 show training fitness 

data from the evolutions performed completely in a single difficult world (world #7 

from figure 5.1).  In the top panel of both figures, the best controller fitness (as 

measured by the bimodal fitness function) was not maximized until after generation 

50 in population 1, and generation 100 in population 2.  This reflects the fact that 

controllers in populations 1 and 2 were evolved from the beginning in the most 

difficult world, and no controller capable of winning both of its games in a 

tournament arose before the 50th (100th) generation.  Before the 50th (100th) generation 

the fitness of the best (fittest) controller in each evolving population can be used to 

demonstrate improvement in populations even though the selection is based on 

relative rather than absolute fitness.   

 

Once the relative selection metric has been maximized in one or more individuals in a 

population, it no longer demonstrates increasing competence in the population as a 

whole.  This reflects the relative competitive nature of the metric.  The relative 

competitive fitness function continues to provide a ranking of individuals within the 

population.  Hence selective pressure will continue to be generated and the 

performance in the population can continue to improve.  In any tournament 

(generation), a controller wining two games in a tournament will receive a relative 

maximum score.  A fit individual that wins a game in one generation’s tournament is 

not however guarantied a win in the next tournament.  A better controller might arise 

in the next generation or the initial conditions used in the games of the next 
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tournament may not favor controllers that won in the previous generation’s 

tournament.  Only controllers (or their offspring) that consistently win games over 

many generations will be retained and further evolved. 

  

In order to demonstrate improvement in the population as a whole, the passive 

performance metric shown in the second panel of figures 5.2 and 5.3 was used.  This 

measures the net number of games won during a tournament.   Both figures are 

similar, so only 5.3 will be discussed.   No wins occurred before the 25th generation of 

evolution.  During this period, 100% of the selection was due to the initial mode of 

the bimodal fitness function.  With no wins occurring during the first 25 tournaments 

(2000 games) it is very unlikely that the second aggregate win/lose selection mode 

alone could have produced sufficient selective pressure to evolve the population from 

its randomly initialized seed.  From the 25th to the 300th generation, there was a slow 

incremental increase in the number of wins per tournament.   After the 300th 

generation, selection was dominated by the win/lose aggregate mode of the bimodal 

fitness function.  This indicates that even though populations evolved entirely in 

difficult worlds initially win very few games, they eventually outgrow the initial 

human-biased mode of the bimodal fitness selection function.  

 

Figures 5.4 and 5.5 show data from the environmental-incremental evolution runs.  

Here, as in the “all-in-one’ cases, both figures are qualitatively similar so only Figure 

5.5 will be discussed.  In Figure 5.5 the best fitness at each generation was maximized 

very early in evolution.  This indicates that the best individuals in the population 
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evolved relatively quickly to be able to win games in the simpler worlds.  Even so, 

panel 2 of Figure 5.5 indicates that at the first generation, no controller in the in the 

initial random seed population was capable of winning a game.   By the 25th 

generation, the population as a whole was capable of winning enough games during a 

tournament to graduate to the next level of training world difficulty.  This is indicated 

in panel 3 of figure 5.5 as a step in the plot from 1 to 2.  Over the course of training 

up to the 250th generation, the population became competent in each of the 

progressively more challenging environments.  This is indicated in panel 3.  The 

cycle of training worlds repeats after it is completed.  Panel 3 of figure 5.5 indicates 

that the first cycle through the training world sequence required 250 generations.  

There after, the population cycled though the sequence nearly as quickly as possible, 

completing four full cycles between the 250th 450th generations.  I should be noted 

that evolving populations are required to spend a minimum number of generations in 

each environment so that the rolling average of wins per tournament integrates results 

from the current training world only.   

 

The most prominent difference between the “all-in-one” and environmental-

incremental evolutions is seen in the wins per tournament data.  The “all-in-one” 

cases show a slow steady rise over the course of several hundred generations.  The 

environmental-incremental cases show a series of fairly rapid increases and sudden 

falls in number of wins per tournament.  These rises and falls correspond to the 

incrementation of training world difficulty.  In spite of these differences over the 

course of evolution, all four populations seem to have achieved similar levels of 
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performance at 450 generations.  In particular, at generation 445, each population is 

currently evolving in the most difficult world (world #7 from Figure 5.1).  In each 

case, populations are capable of generating approximately 20 wins per tournament. 

 

It should be pointed out that the wins-per-tournament metric is not a true absolute 

measure of population fitness either.  In time, the number of wins per tournament 

would also come to a limit.  In this research the absolute bound on number of wins is 

dictated by the tournament structure to be 80.  This is unlikely to be achieved no 

matter how fit the controllers are.  The measure loses is absolute meaning as 

populations become fitter.  To make this clearer, consider a population in which no 

controller is able to win a game over the course of a tournament.  Such a population is 

likely to be less evolved (less fit) than a population that produces 5 wins over the 

course of a tournament.  On the other hand, after a population can achieve between 20 

and 30 wins per tournament, further changes in number of wins may not be correlated 

to absolute fitness at all.  It is conceivable that the number of wins could go down 

even while the absolute fitnesses of individuals in a population are increasing.  For 

instance, controllers could develop better defending skills while maintaining a 

constant level of offensive skills.   

 

In chapter 6, absolute controller fitness will be addressed in detail.  Chapter 6 

employs extensive competitions of evolved neural controllers with knowledge-based 

controllers of known abilities and represents a main portion of experimental work 

associated with this research.   
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5.6 Demonstration and Discussion of Evolved Controller Behaviors 

In this section of the chapter we present the results of several games played with 

teams of robots using fully evolved controllers.  These are presented to qualitatively 

demonstrate evolved controller behaviors.  We will focus on controllers from 

population 4 discussed in the previous section.  Although all of the populations seem 

to produce similar fitness levels after 450 generations, the next chapter will 

demonstrate that population 4 is measurably better than the others, although not to a 

dramatic degree.  It is for this reason that we focus on population 4 here.  

 

In Figure 5.6 a robotic Capture the Flag game generated in a simulated environment 

is shown.  Fully evolved neural network controllers from generation 450 of 

population 4 were used to controller all of the robots.  In the figure, the smaller dots 

with the fan-like graphics are the robots.  The fan-like graphics display sensor data 

and are not physical objects.  The paths taken by the robots during the simulation are 

indicated by the irregular curves.  There are two robots on each team to make a total 

of four robots in the simulation.  The larger dots represent the stationary goal objects.  

The heavy black line segments represent walls in the environment.  The red team 

robots were controlled by copies of network #1 and the green team robots by copies 

of network #2.  In this case, the game was won by the red team (paths indicated by 

the dark lines).  The red robot that won the game for its team has made its way to the 

green goal object in the upper left corner of Figure 5.6.   
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Figure 5.6.  Evolved controllers playing robotic Capture the Flag in a simulated 
world.  The smaller filled colored circles are the robots.  The fan-like graphics are 

representations of robot sensor data.  The larger filled colored circles are the 
stationary goal objects.  The paths taken by the robots during the simulation are 

indicated by colored curves.  Here, the path taken by the winning robot is shown by 
the dark (red) line.  The light colored lines show the paths taken by the green-team 

robots 
 

As was the case during evolution, all robots on a team have homogeneous controllers.  

This does not preclude cooperative or differential behavior, because each robot 

occupies a different position and receives different sensor values. 
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Figure 5.7.  Controllers evolved in population 4 competing in a very large 
complicated world.  All robots are using the best controllers from population 4.  The 
game was won by the green team.  The solid light line indicates the path taken by the 

green robot that eventually located the red goal. 
 

Figure 5.7 shows the results of another simulated game in a very large complicated 

environment.  The figure demonstrates that evolved controller behaviors generalize to 

novel environments.  This is a particularly dramatic example.  Robots are able to 

progressively search a novel environment.  Here the world used is many times larger 

than the largest world seen by the controllers during evolution (world #7 in Figure 
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5.1).  In addition, the duration of the game is very long compared to game lengths 

seen during evolution.  The game required 1073 moves to complete.  The maximum 

number of time steps allowed during training was 220 steps (moves).  In Figure 5.7, 

the game was eventually won by the green team.  Robots moved extensively through 

their environment.     

 

Robots being controlled by the best neural network from population 4 very rarely 

collide with objects.  A collision can result in the immobilization of the robot.  Two 

of the robots (one from each team) eventually became stuck during the game shown 

in Figure 5.7.  One robot on the green team collided with an object and became 

permanently immobilized near the 400th time step.  Similarly, one robot from the red 

team became permanently immobilized after the 700th time step.  The other two 

robots continued to travel about the environment for the duration of the game.   

 

Robots using controllers from this population have evolved limited abilities to 

extricate them selves from immobilization situations (being stuck).  In some 

instances, robots back up after some time if they detect a very close wall object.  No 

noise was injected into the simulated robot processed vision sensor inputs.  Hence, if 

robots remain immobile for more than one time step, their sensor inputs will be 

exactly repeated from the previous time step.  In that case, controllers must use 

information from the past to generate sequences of commands that might allow them 

to escape.  These robots clearly demonstrate this ability in the simulated 

environments.   This demonstrates that evolved controllers are not purely reactive.   In 
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fact, on occasion controllers were observed to remain immobile for many time steps 

(30 or more) and then to back up and spin around.  Even so, most of the observed 

evolved behaviors were reactive.  The neural networks can evolve to produce 

temporal behaviors, but purely reactive near-optimal solutions may exist for this 

game.  A very complex strategy is likely to be only marginally more effective than 

the behaviors displayed by the evolved controllers in Figures 5.7.1 and 5.7.2.  This 

will be investigated in the next chapter, where evolved neural controllers are 

competed in extensive tournaments against knowledge-based controllers with well-

defined behaviors.   

 

A close examination of controllers outputs revealed that actuator commands 

stabilized relatively quickly, but do not reach a constant steady state.  In a simple 

experiment, the controller discussed above was repeated fed identical sensor inputs.  

The observed output did not reach an exact steady state even after 30 time steps (data 

not shown).  Even so, most observed controller behaviors were effectively reactive.   

 

An additional experiment was performed in simulation to demonstrate that controllers 

evolved progressively over many generations.  A set of simulated games was played 

using controllers from different generations selected over the course of evolution.  

Again population 4 was used.  Figure 5.8 shows eight such simulated games.  Each of 

the eight games was initialized from the same robot and goal starting configuration.  

Homogeneous controllers were used in each game.  The games were allowed to 

proceed for 400 time steps before being considered a draw and being terminated.  In 
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the first game (panel (a)), the original progenitor controller from the initial un-

evolved neural network population was used.  In the remaining games, the best 

controller from each generation being tested was selected and copied into the 

competing robots.  In the second game, the best controller from generation 50 was 

used.  In the subsequent panels (c) to (h), 100 generations progressively separated the 

“ages” of the populations. 
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Figure 5.8.  A sequence of games played with controllers from sequential generations 
of population 4.  The same random initial positions for robots and goals were used in 

each game.  Robots show increasing levels of performance over the course of 
evolution. 

 

Recall that population 4 was generated using environmental-incremental evolution 

where the controllers were evolved within increasingly complex environments.  The 
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first 4 games shown in Figure 5.8 cover the first 250 generations of evolution of 

population 4.  These corresponds to the period of evolution devoted to the first full 

cycle through the set of incremental training worlds.  The training data reported in 

Figure 5.5 indicate that the number of games won by the population as a whole during 

a generation (a tournament of games) over this period of evolution remained at or 

below the threshold at which selection incorporated information generated by the first 

mode of the bimodal fitness selection function.   Over this period of evolution, 

controllers evolved increasingly better navigation skills.  The un-evolved controllers 

in panel (a) collide with walls almost immediately.  At the 50th generation, one of the 

robots is able to make a fair amount of progress through the environment before 

becoming stuck.  Generations 150, 250, and 350 show increasing levels of wall 

avoidance skills but robots are unable to win games.  At the 250th and 350th 

generations (panel (d) and (e)), robots are able to travel indefinitely without getting 

stuck.  After 400 time steps at the termination of the games, robots are still traveling, 

but none of them has been able find a goal object and win.  The training data reported 

in Figure 5.5 indicate that almost all selection after the 350th generation used the 

second win/lose selection mode.  It is during 450th, 550th, and 650th generations that 

controllers have evolved to be able to win games.  The final three games of Figure 5.8 

all terminate with wins for one or the other team.  In the last three panels, robots 

appeared to be executing a “left hand mouse rule” search strategy in conjunction with 

object avoidance.  In contrast, at generations 250 and 350 robots seem to avoid walls 

well and even to make some headway exploring the maze, but do not find their 

opponent’s goals.  It is likely that the initial mode of the selection function is 
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generating little selective pressure in the best robots of generations 250 and 350 

because it has been maximized.  These data suggest that the second purely aggregate 

success/failure mode of the fitness function does generate selective pressure for the 

evolution of simple strategies above and beyond the traveling behavior selected for by 

the first mode.   

 
Table 5.4.  Qualitative acquisition of behaviors over the course of evolution of 

population 4.  The solid dots indicate that a behavior is observed in that generation.  
The open dots indicate that the behavior has been superseded by another. 
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0      
50 ●     
150 ● ●    
250 ○ ● ●   
350 ○ ○ ● ●  
450 ○ ○ ● ● ● 
550 ○ ○ ● ● ● 
650 ○ ○ ● ● ● 

 

Table 5.4 summarizes the discussion of acquisition of behaviors over the course of 

evolution.  The identification of a particular behavior here represents a qualitative 

human assessment based on observation of robots during game sequences.  In the 

later generations, exact behavior is very difficult to predict, and behaviors observed 

from the distal (exterior to the robot-controller system) are not necessarily reducible 

to desecrate behaviors at the proximal level (from the point of view of the robot 

controller).  See [80] for a discussion of the terms proximal and distal.  Actual 
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behaviors at the proximal level are likely to be inextricable co-coupled with one 

another, and with sensor inputs. 

 

5.7 Transfer of Evolved Controllers to Real Robots 

As a final consideration in this chapter, evolved controllers were transferred to real 

robots and tested a physical maze environment.  Further physical verification results 

are presented in Chapter 6.  Results generated with real robots in the physical maze 

environment are shown here for qualitative comparison to the simulated games above.  

Figure 5.9 shows the results of a game played with real robots in the physical maze 

environment.  Here, copies of the best network from population 4 controlled all of the 

robots.  It should be noted that robots recognize their teammates and goal as a 

function of the visual sensor system.  Rather than seeing red and green, robots see 

“my color” and “opponent color”.  The figure shows the last image in a set of images 

collected over the course of the robot game from an overhead camera.  The image 

sequences were processed to track the robots over the course of game play.  The 

dashed lines indicate the paths taken by the robots.   The light lines indicate the paths 

traveled by the green robots over the course of the game, while the dark lines indicate 

the paths of the red team robots. 

 

 127 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  
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Figure 5.9.  An example game involving real robots in the physical maze 
environment.  All robots are controlled by evolved neural networks.  The dashed lines 
indicate the paths taken by the robots during the course of the game.  The light lines 
indicate the paths taken by robots on the green team while the dark lines indicate the 

paths taken by the red robots.  This game was won by the red team. 
 

As in the simulations, robots were controlled with the best performing neural network 

from population 4.  In the real environment robots were able to avoid walls and locate 

goal objects.  In the simulations, any contact friction was modeled at 100%.  In the 

real world, however, robots did slip somewhat when in contact with objects.  In some 

case this benefited robots in the real world because it could allow them to jiggle lose 

from a physical situation in which they had become immobilized.  Even so, robot wall 

and object avoidance involved very little contact.  In most instances, robots would 
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come very close to walls, but would then back away or execute a turn.  As in the 

simulations, robots could become immobilized by colliding with an object in such a 

way that the visual sensors could not detect the object.  For example, this can occur if 

a robot heads toward the edge of a corner or wall segment, then misses the edge with 

its forward facing camera, but hits the edge with a portion of its body that is out of 

view of its camera.  In the simulations, robots learned to avoid such situations by 

executing precise turns and curves.  The temporal nature of the evolved networks 

allows controllers to respond to objects that have recently been in view, but have 

passed out of the sensor field.  The same turn and curve commands were produced by 

the real robots in the real world, but sensor and actuator noise can result in a variation 

of about 15%.  In most cases, the controllers would re-compensate on the next time 

step, but in cases in which the robot had moved so that an important object (such as 

wall edge) was out of view, a 15% error could cause a collision. 

 

5.8 Conclusion 

In this chapter, a bimodal fitness selection metric was developed and applied to the 

evolution of neural network based controllers for mobile robots engaging in a 

competitive team game Capture the Flag.  The fitness selection metric accommodates 

sub-minimally competent initial controller populations with a hand formulated mode.  

A second purely aggregate success/failure mode becomes active if controllers are able 

to complete the overall complex task to a detectable degree.  Fitness measurement 

produced by the second mode supersedes that produced by the first mode so that 
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controllers able to accomplish the overall task (however poorly) are selected without 

regard to any human biases used to formulate the initial mode.  Both of the selection 

modes may by active, during a particular generation and throughout evolution and 

interact dynamically and automatically. 

 

Several populations of robot controllers were evolved under different evolutionary 

conditions.  Relative fitness was recorded over the course of each evolution and was 

presented in several figures.  Those data show related training and evolution 

dynamics produces by the different evolutionary conditions.  

 

One particular population of evolved controllers was examined by playing test games 

with the best-evolved member of the population at set generation points over the 

course of evolution.  Eight sequential example games were presented and the 

development of expression of qualitative behaviors from the distal point of view was 

discussed.  These behaviors included rudimentary navigation, more complex 

navigation, goal differentiation, and the expression of a left-hand mouse-like search 

strategy.   The exact behaviors of fully evolved robot controllers were dynamic and 

difficult to exactly characterize.  

 

For nontrivial tasks it may not be practical to identify and characterize behavior.  In 

the next chapter evolved controller behavior will be addressed in terms of ability to 

compete overall, rather than in terms of expression of individual behaviors.     
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CHAPTER 6.  THE APPLICATION OF METRICS FOR 
POST EVOLUTION EVALUATION OF EVOLVED 

CONTROLLERS 
 

 

The experimental work presented in this chapter focuses on defining and applying 

absolute metrics for evaluating the performance of evolved robot controllers.  In [27] 

it was noted that co-evolutionary processes do not evolve within the context of a pre-

determined or fixed fitness landscape.  Hence, training fitness values cannot be used 

to monitor the progression of training past the initial phases of evolution.  This is also 

true for the single-population competitive selection used to evolve the robot 

controllers described in Chapter 5.  The trends reported in the training fitness plots 

(the top panels of Figures 5.2-5.7) do not correlate directly to absolute fitness.  The 

fitness of each individual in a population was affected by the fitness’s of the other 

individuals in that population, thus producing a changing fitness landscape with 

varying, non-absolute fitness values.  To clarify this, consider the following example:  

Suppose, by chance a particular individual was maintained without receiving new 

mutations in a population over many generations.   Since fitness selection is 

competitive and relative, the selection fitness of the constant individual would appear 

to go down over the course of many generations because the relative fitnesses of the 

other individuals in that population would be increasing (assuming the training 

process had not plateaued).  
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The passive metrics (i.e. ones not effecting the process of selection) that were used to 

evaluate the increasing level of performance of controllers in terms of the total 

number of wins achieved by a population in a generation, were also not entirely 

absolute. This was especially true as populations evolved higher levels of competence 

later in evolution.   (These were shown in the center panels of Figures 5.2-5.7.) 

 

6.1 A Metric for Post-evolution Evaluation of Controller 
Performance 

To measure absolute performance, evolved controllers were compared to a controller 

of known abilities.  A knowledge-based controller was designed to play the robotic 

version of Capture the Flag.  This controller was hand coded and used in competition 

with the evolved ANN controllers.  The following table briefly summarizes the 

knowledge-base controller’s behaviors: 

 
Table 6.1.  Behaviors expressed by the hand-coded knowledge-based controller.  

Behaviors are given in order of precedence. 
 

Precedence Behavior 
1 If enemy goal is detected, robot actively 

homes in on goal 
2 Turns away from own goal 
3 Avoids teammate robots by passing on the 

right 
4 Blocks close enemy robots 
5 Avoids distant enemy robots 
6 Extracts from corners and close walls 
7 Avoids walls and follows corridors if no 

other objects are detected 
8 Moves forward in free space 
9 Detects immobilization on out-of-view 

objects and responds with rotations of 
random degree 
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The four populations evolved using the methods described in the previous chapter 

were evaluated in extensive sets of tournaments. After evolution, the “best” 

performing controller in each population was pitted against the knowledge-based 

controller in a series of games.  Tournaments of 240 games were played using 

controllers from several uniform generation points from each of the four evolved 

controller populations.  Each tournament used 120 random robot-and-goal position 

initializations based on the first 120 random numbers generated by MATLAB 5.3 

using the initial seed 1.  To eliminate possible advantage to one or the other controller 

(robot team), each initial position was used for a set of two games.  In the first game, 

the ANN controllers controlled the red team (team 1), while the knowledge-based 

controllers controlled the green team (team 2).  Visa versa, in the second game, the 

knowledge-based controllers controlled the red robots, while the green robots were 

controlled by the ANN controllers.  These tournaments were carried out in three 

different maze world configurations.  These were selected to be of varying difficulty 

based on size and number of walls and corridors.  Figure 6.1 shows the three maze 

worlds used for testing the evolved controllers in competition.   

 

Evolved controllers were tested in multiple environments so that a more accurate 

overall evaluation of their capabilities could be made. 
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 Testing World #1 Testing World #2 Testing World #3 

 

Figure 6.1.  Three testing worlds. 
 

Note that Testing Worlds #2 and #3 were not used during evolution of controller 

populations and represent novel worlds as far as the evolved controllers are 

concerned.  In addition, the knowledge-base controller was not involved in any way 

with the selection or evolution of the evolved controller populations and its behavior 

had no effect on evolving controller strategies.  In effect, the knowledge-based 

controller is a novel opponent to the fully evolved controllers. 

 

Competition with knowledge-base controllers will be used extensively in this chapter 

to compare and evaluate evolved robot controllers and populations.  These 

competitions will also be used to demonstrate increases in absolute performance over 

the course of training, and to identify when learning plateaus appear in training.  

 

Selection of the “best” individual of an evolved population was done by averaging the 

net number of wins achieved by each controller over a series of 30 intra-population 

tournaments (i.e. not involving the knowledge-based controller) in Testing World #3.  

The controller with the greatest number of wins was selected as the “best”.  It should 
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be noted that the set of 30 random initial states used for best controller selection were 

generated based on sequential random numbers starting with the MATLAB 5.3 seed 

31415.  Hence, these differed from the set of 120 random initial states  used for the 

paired sets of 240 testing games (in each testing world).  This was done to avoid 

selection of a “best” controller that was fitted to a lucky set of random initial 

conditions.  The process of “best” controller selection was very computationally 

expensive, and required several days of computation time.  It is still possible that the 

true best controller was not selected, but it is very unlikely that a relatively poor 

controller in the population would achieve the best ranking over the course of 30 

tournaments.  This “best” controller selection method was not used to drive selection 

during evolution for several reasons.  The first is of course the large amount of 

computation time needed.  Also, because the GA used a 50% selection and 

replacement strategy during propagation, it was only necessary for the best controller 

to fall within the fittest 50% of the population for it to be retained. 

 

The justification for using several testing worlds for evaluating the controllers is that 

evolved controller strategies that produce effective play in one world might not do so 

in the next.  Simple strategies may be optimal in the simplest world, whereas more 

advanced strategies may actually fail in the simple world.  For instance, a controller 

that tends to find and follow walls might do poorly in a simple world with no interior 

walls.  A spectrum of tournaments in the several worlds gives a better profile of 

evolved controller performance. 
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6.2 Absolute Performance of Evolved Controllers 

This section presents data generated in large competitions of 240 games involving 

teams of robots controlled by the evolved ANN controllers and by the knowledge-

based controllers.  These sets of games and tournaments constitute a post evolution 

performance metric.  This metric can be used both to evaluate the absolute level of 

competence of controllers, and to compare the performance of several evolved 

controllers to one another. 
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Figure 6.2.  Four populations evolved under different conditions were evaluated in 
competition with the knowledge-based controller.  The best individual from each of 
the populations played 240 games against the knowledge-based controller in each of 

the three testing worlds.   Each sub-triplet of bars gives the results from a single 
tournament in a single world.  The dark bars indicate the number of evolved 

controller wins in a given tournament, the shaded bars show the number of wins 
achieved by the knowledge-base (rule base) and the white bars indicate games that 

ran over the time limit (draws).   
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Figure 6.2 shows the results of tournaments with evolved ANN controllers competing 

against knowledge-based controllers.  The best-evolved controller from each 

population was placed in competition against the hand-coded knowledge-based 

controller in a series of 240 games, and in each of the testing worlds.  In all, the 

results from 12 tournaments are shown in the figure.  Each small cluster of three bars 

in Figure 6.2 gives the results from a single testing tournament of 240 games in a 

particular testing world.  Each super-cluster of three groups of three bars (nine bars 

total) constitutes the results of three tournaments in the three progressively difficult 

testing worlds and makes up the total competition data collected for each “best” 

evolved controller.  Progressing from left to right, the first bar of each small group of 

three individual bars indicates the number of evolved ANN controller wins, the 

second bar indicates the number of knowledge-based controller wins, and the third 

bar indicates the number of games in which neither team was able to find their 

enemy’s goal.  The intervals ranges shown on each bar indicate a 95% confidence 

interval for the data [91].   

 

All four controllers from the evolved populations were able to win games in all of the 

competitions.  However, only populations 1 and 4 were able to win more games than 

the knowledge-based controller over the course of a set of 240 games in the most 

difficult world (Testing world #3 from Figure 6.1).  

At first glance, the data shown in Figure 6.2 indicate that the environmental-

incremental evolution produces somewhat superior results.  However, population 1, 

which was evolved entirely in world #7 of Figure 5.1 (the most difficult training 
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world) was able the win a significant number of games in each of the test worlds and 

also out-competed the knowledge-based controller, although not to a statistically 

significant degree.  Although the best results were achieved in population 4 using 

environmental-incremental evolution, these results show that environmental-

incremental evolution, is not absolutely required at least in the case of the behaviors 

evolved in this work.  It is speculated that the slightly superior results seen in the 

incremental case actually reflect maintenance of behavior, more than an improvement 

in behavior acquisition.  This is evidenced by the rapid succession though the set of 

training worlds that occurred after population 4 completed the first cycle of evolution 

though the set of training worlds (see Figure 5.5 from Chapter 5). 

The most salient result of the data shown in Figure 6.2 is that by the 450th generation, 

populations in three out of the four evolutionary conditions were able to produce 

behavior that was competitive with the knowledge-base in all of the testing worlds. 

It was hypothesized that random competitor selection during training tournaments 

would add excess noise to the selection process and result in poorer or slower 

absolute fitness evolution.  This is in fact seen in the absolute fitness’s of population 

2, as shown in the second super-group of bars 9 in Figure 6.2.  There the evolved 

ANN controller was beaten by a statistically significant number of games by the 

knowledge-based controller in all of the testing worlds.  However, the same effect 

was not observed when random opponent selection was applied to the environmental-

incremental case of population 4.  That evolution appeared to produce the fittest 

“best” controller in the most difficult testing world.    
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The metrics for absolute controller fitness of Figure 6.2 do give a numerical 

relationship between these particular four “best” evolved controllers with respect to 

the knowledge-based controller and to one another.  However, those data only weakly 

indicate differences due to evolutionary conditions.   This is because full evolutions 

starting from random initial controllers were performed once for each of the four 

conditions.  Each evolution was started from an identical seed population, so all 

observed differences in final evolved “best” controller performances are due to 

differences introduced during evolution.  However, it is likely that stochastic 

processes dominate (to the extreme) during evolution.  Because the resulting ”best” 

controllers are all fairly competent, repeated evolutions starting with different seeds 

would be required to evaluate the significance of evolution conditions on resulting 

populations.  What can be said is that incremental and non-incremental conditions 

both produce competent controllers.   

 

6.3 Measuring Absolute Fitness Over the Course of Evolution 

Competition of evolved controllers against a known knowledge-based controller was 

also used to measure the absolute fitness of evolving populations over the course of 

evolution.  Figure 6.3 shows the progression of acquisition of game playing ability 

over the course of evolution of population 4.  The figure show competitions 

performed with the best current individual taken every 100 generations starting with 

generation 50 and ending with generation 650.  Each generation was tested in the 
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three test worlds, and in each case 240 games were played against the knowledge-

based controller (for a total of 21 tournaments).   
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Figure 6.3.  Performance of population 4 in competition against the knowledge-based 
controller at successive generation points during the course of evolution.  Each best 

controller played one tournament in each of the three testing worlds.  The testing 
worlds are repeated from Figure 6.1 in the thumbnail panels in the lower left of the 

figure. 
 

The sequence of grouped tournament results shows a steady increase in game playing 

ability.  This is especially prominent in the most difficult test world (noted as “Hard” 

in Figure 6.3, and Testing World #3 in Figure 6.1).  At generation 50, the best 

individual in the evolving population was only able to win 14 games out of 250 while 

the Knowledge-based controller won 139 games.  At generation 450, the evolving 

controllers were able to play competitively with the Knowledge-based controller, 

wining 103 games to the Knowledge-based’s 89.  This steady progression of fitness is 

not directly apparent in the raw training fitness data from the evolution of population 
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4 (see Figure 5.5).  These results indicate that evolved behaviors were not merely 

cycling through a set of simple behaviors without achieving absolute improvement as 

was observed in [27].  In that work the researchers applied competitive fitness to the 

co-evolution of predator and pray robot behaviors. 

 

Figure 6.3 indicates that a training plateau is reached near the 450th generation.  It is 

in that generation that evolved controllers are first able to play competitively against 

the knowledge-based controllers in the most difficult testing world.  Note that 

competitive play in the empty world is achieved much earlier by the 150 generation.  

Further, competitive play is achieved by the 250th generation in the simple world.  

This indicates that simpler strategies are likely near-optimal in simple environments.   
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Figure 6.4.  Final generation competition results.   Earlier generations (50 150 250 

350 450 550) of population 4 compete against the final generation (650) of population 
4.  All 6 tournaments of 240 games were played in the most difficult testing world 

(world #3 from Figure 6.1). 
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A further demonstration of the progressive evolution of controller performance, and 

of eventual plateauing is given by the data reported in Figure 6.4.   Here, rather than 

using the knowledge-based controller, the best-evolved controller of population 4 

from its final generation (650) was played in competitions against earlier generations.  

Here, again, each tournament was made up of 240 games using a fixed set of 120 

random initializations.  A total of 6 tournaments were played.  In the Figure 6.4, all 

tournaments were played in the most difficult world.  Since the goal of the 

experiment was to demonstrate progressive evolution followed by plateauing within a 

population, the simpler worlds were not included.  In the figure, the dark bars record 

the number of wins achieved by the evolving controllers at each generation point.  

The light shaded bars record the number of wins achieved by the best network from 

generation 650.  The data show an increase in the number of wins achieved by the 

evolving generations up to the 450th generation.  The 550th generation appears to be 

slightly less competent than the 450th, and the 450th seems to be slightly more 

competent than the 650th generation.  However, numbers of wins reported in those 

two tournaments are within the 95% confidence intervals.  These slight oscillations in 

competence after the 450th generation are also seen in the data presented in Figure 

6.3.   
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6.4 Physical Verification: Transfer and Testing of Evolved 
Controllers to Real Robots 

This section shows results generated using real robots in the physical environment.  

Figure 6.5 shows the results of two games played with teams of real robots in a 

physical maze environment.  In the games, the best-evolved ANN controller from 

population 4 and the knowledge-based controller were used.  These were transferred 

to teams of green and red robots respectively.   Each team consisted of two robots to 

make a total of four robots operating in the maze environment at one time.  The 

robots within a team used homogeneous controllers.  The evolved ANN controller 

tested in the real world was the “best” controller from the 450th generation of 

population 4. 

 

 

   
(a)                                                                      (b) 

 
Figure 6.5.  Two example games involving real robots in a physical environment.  In 

each panel, the green robots (light dashed lines) are controlled by evolved neural 
networks while the red robots (dark dashed lines) are controlled by the knowledge-

based controller.  The dashed lines indicate the paths taken by each of the robots 
during the course of each game.  The first game was won by the evolved neural 

network controllers, while the second was won by the knowledge-based controller. 
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The two games shown in the figure were initialized with reciprocal starting position 

for robots and goal positions.  The first game in panel (a) was won by the neural 

network controlled robots while the second game was won by the robots using 

knowledge-base controllers (b).  In both games, it was the goal in the lower left 

portion of the maze that was located by the opponent robots.   

 

Given the length of a single game in the real world, it is impractical to duplicate the 

tournaments.   The results displayed in Figures 6.2 and 6.3 required 7920 separate 

games.  This large number of games was needed to produce results with acceptable 

95% confidence intervals.  The two game sequences in Figure 6.5 show that 

behaviors seen in simulation are also displayed in the real world.  This remains a 

qualitative assessment, though.  Robots avoid walls with various turns and sequences 

of backward and rotation steps.  The navigation behaviors were not fully 

characterized.  Unlike some of the evolved controllers resulting from earlier 

incarnations of the ER test-bed, the controllers from population 4 were quite dynamic 

and their exact responses were quite difficult to predict.  Sensor noise (about 15%) in 

the real world also compounds the problem of behavioral analysis.   

 

Behavioral analysis is not the main focus of this research.  Rather, the focus is on the 

study of methods for the automation of synthesis of behavioral robotics controllers.  

In the ideal case, this process would be fully automated, and no a priory knowledge of 

the elements of behavior would be required to be input into the process.  The only 
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required input from the designer would be a measure of aggregate or overall task 

completion.  After a controller has been evolved, it may be of interest to analyze the 

details of its acquired behaviors, but it is not necessary to its functioning to do so.   

 

The fidelity of transference of behaviors from simulation to reality is another matter.  

It is important to demonstrate that differences between simulation and reality are 

small enough so that behaviors evolved in simulation are expressed in the physical 

world.  In order to achieve this, is important to develop ER simulation test-beds in 

conjunction with physical robot systems.  Although it may be possible to develop a 

simulation environment without a particular real robot system in mind, it is much 

more difficult than early researchers may have believed.  The difficulties stem mainly 

from conceptual problems rather than technological ones.  The design of unrealistic 

sensors, the incidental use of un-obtainable environmental information, and other 

similar issues can lead to the development of untransferable controllers [21][65].  For 

these reasons, we believe that the feasibility of transference is best demonstrated by 

example.  This will likely not be the case in the future, in light of the rapid 

development of virtual reality, gaming physics engines and the rise of realistic 

computer animation for entertainment.  In the early years of ER research, it was 

speculated that transference problems could only be overcome by evolving controllers 

using only real robots [6].  However, and perhaps surprisingly, this did not turn out to 

be the case.  It is in fact well within the current state of the art of computing, 

simulation, an autonomous robot technology to build finely couple simulation and 
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hardware platforms.  The real problems lie in the most fundamental elements of the 

process of automatic construction of intelligence.   

 

In the research reported on in this dissertation, the behaviors of the knowledge-based 

controller were known, and could be observed in the real world and in simulation.  

Based on qualitative comparisons, the behaviors of the hand-coded controller were 

observed to be expressed similarly in simulation and reality.  As is the case with the 

evolved controllers, the hand-coded controller could be run on stimulated robot 

agents, and the physical robots without the need for any modifications.  Hence, its 

qualitative predictability in both simulated and real environments does support the 

assertion that behaviors do transfer from simulation to reality in this robot research 

platform.   

 

That said, transference was not perfect.  Because of the iterative looping nature of the 

fundamental EvBot control structure, both the evolved and hand-code controllers re-

compensate for slightly mis-calibrated sensors and actuators.  These slight mis-

calibrations were observed to lead to transference problems in one situation.  If a 

robot controller produces a precisely evolved arch command close to a right-angled 

corner or wall edge, the robot can move in one time step into a position where the 

robot is stuck, but in which the robot camera does not see the object the robot is stuck 

on.  It is important to note that this situation is modeled in the simulated world, and 

that controllers must evolve to avoid it.  Evolved controllers were usually successful 

in avoiding out-of-view corners, but collisions with corners where more frequent in 
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the physical maze environment.  The problem in transference arises when slight 

differences in the physical results of evolved arch commands cause the robot to hit an 

out-of-view object, rather than just barely missing it (as it would do in simulation).  

After such an occurrence, controllers receive no sensor information that would allow 

them to re-compensate (since they don’t see the object).  In other situations observed 

in the real world, evolved controllers were able to avoid objects in ways that were 

qualitatively similar to that observed in simulation.   

 

6.5 Chapter Summary 

This chapter presented quantitative and comparative measurements of evolved 

controller performance.  Evolved controllers were tested in tournaments of games 

against a hand-coded knowledge-based controller.  Testing tournaments were 

performed in environments of different complexity to provide a better measure of 

controller performance.    

 

Each of the four evolved populations discussed in the previous chapter was tested.   It 

was found that the fittest controller from population 4 at generation 450 was able to 

compete best against the knowledge-based controller and could beat it in a small 

majority of the games played to a win in the most challenging testing environment.   

Population 4 was evolved under environmental-incremental conditions.  Population 1, 

however, which was evolved entirely in a single very challenging world performed 
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almost as well as population 4, so no real advantage can be awarded to incremental 

evolution methods. 

 

The salient result is that populations of ANN controllers can be evolved using the 

bimodal fitness function of Chapter 4 to perform competitively with this particular 

knowledge-based controller.  The performance of evolved controllers can be 

measured with respect to a fixed controller of know abilities.  These measurements 

can be used to compare controllers to each other, and to demonstrate incremental 

improvement over the course of evolution.  The knowledge-based controller was not 

used in any part of the evolution of the ANN controllers.  During post evolution, the 

knowledge-based controller was effectively a novel opponent to the evolved ANN 

controllers.   
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CHAPTER 7.  CONCLUSIONS AND FUTURE WORK 
 

 

 

This chapter contains a brief summary (Section 7.1) of the research presented in the 

previous chapters.  Section 7.2 provides a discussion of important unanswered 

questions relevant to ER.  Section 7.3 proposes related future research.  In that section 

four lines of work that build on the research presented herein are outlined.   

 

7.1 Summary of Main Results  

This research has generated several contributions to the field of evolutionary robotics.  

These results will be reviewed briefly in the following paragraphs.  

 

Very large arbitrarily complex neural controllers were evolved for group searching 

behaviors in robots.  In particular, populations of neural controllers were evolved to 

play the competitive team game Capture the Flag.  The networks used are much 

larger than those reported on in other ER research in the literature.   Use of such 

networks is significant for two reasons: First, evolution of very large networks 

addresses issues related to the scalability of ER methods to complex tasks in which 

the details needed to specify ideal network architectures are unknown.  With a few 

exceptions, previous work has been restricted to very small neural networks, 

generally using 10 or less hidden neurons.  Second, large networks are likely to be 
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required to accommodate complex and numerous sensor inputs or complex sensor 

fusion elements.  

 

This research is, to the knowledge of the author, the first ER work to evolved 

behavioral robotics controllers that depend exclusively on processed color vision for 

the sensing of their environment.  The work made use of video images that were 

processed into 150 or more individual network inputs.  The coupling of simulated and 

real world sensor systems was accomplished by selecting an intermediate level of 

processing that was both amenable to simulation, and could be implemented 

efficiently on real video images.    

 

Evaluation of performance fitness during evolution was based on competition 

between individuals within each current generation of an evolving population.  

Similar types of selection have been used in other areas of evolutionary computing 

and co-competitive evolution has been applied in ER to evolve predator and prey 

mobile robot controllers [30][59][27].  The application of relative competitive 

selection was used in this research to drive the evolution of mobile robot controllers 

to play an interactive competitive team game, Capture the Flag.  A bimodal fitness 

selection function was formulated to accommodate sub-minimally competent initial 

controller populations early in training (the Bootstrap Problem), but to select 

controllers based only on aggregate success-failure later in evolution.    
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Finally, evolved controllers were evaluated through the use of extensive tournaments 

with one another and also with a knowledge-based controller of known abilities.  

Metrics for absolute and comparative controller performance were developed using 

consistent sets of random game position initializations, and environments of 

increasing complexity.  Such metrics are necessary for evaluating the performance of 

behavioral robotics controllers because sensor to motor mappings that produce a 

given behavior are generally not know for non-trivial behaviors.  Additionally, 

relative and competitive aggregate training fitness functions produce a relative 

ranking, but give little information about absolute controller performance quality.  

The best evolved game-playing controllers in this research were able to win a modest 

majority of games in tournaments of 240 games against the knowledge-base 

controller. 

 

7.2 The State of the Art of ER and Unresolved Issues 

There are questions of fundamental concern to the further development of ER 

methods that remain unanswered.  This section addresses several of these unresolved 

issues.   

7.2.1 Artificial Evolution is Unnatural 

Probably the most important question facing ER, and related fields is this:  Is it 

possible to use artificial evolution to evolve arbitrarily complex intelligent systems in 

the general case?  State of the art ER methods have not by any stretch of the 

imagination lead to the fully automated construction of complex behavioral robotics 
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controllers.  As was noted in Chapters 1 and 2 of this dissertation, most work in the 

field has dealt with very basic proof-of-concept experiments.  The research in this 

dissertation extends such basic work, but is still focused on a particular application 

within a class of tasks that can be formulated into competitive games.   

 

The fundamental problem is that almost all artificial evolution methods differ from 

natural evolution in one crucial and fundamental aspect: artificial evolution methods 

are formulated to solve specific complex problems, while natural evolution solves 

only one simple problem, namely continued propagation of self-replicating structures.  

It has been argued that natural evolution has found numerous incredible and intricate 

solutions to specific physical and computational problems.  This is not the case.  

Although living systems do indeed solve very complicated problems, this is purely a 

by-product of natural evolution’s single selection process.  Natural evolution does not 

seek to find any particular solutions to any particular problems beyond the 

propagation of self-replicating structures.  The resulting complexities found in nature 

have not been the result of specific directed synthesis or optimization processes.   

 

To solve a specific problem using simulated natural evolution, it is necessary to find a 

representation of the problem that is equivalent to survival.  That in itself is 

fundamentally unnatural.  Even worse, for a complex problem, designers may be 

required to know exactly how to solve the problem in order to formulate it in terms of 

survival in an artificial evolution environment. 

 

 152 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

There are only a few examples of the application of artificial evolution resulting in 

the evolution of complex novel intelligence.  Those cases, though, exploit unusual 

features to formulate selection metrics or environments that allow survival to become 

synonymous with continued improvement of performance of a specific task.  The best 

know example of these is the Checker playing neural network of Chellapilla and 

Fogel [68].  That work evolved Checkers-playing neural networks using only 

aggregate competitive selection.   Using only aggregate win/lose selection, randomly 

initialize networks were evolved in an all-in-one (non-incremental) evolution session 

into networks that could beat human experts (although not masters).  The work, 

however, exploited a feature of Checkers that is very rarely found in complex 

systems: the game will almost always be played to completion with a winner, no 

matter the skill level of the players.  This is very important, because it allowed 

randomly initialized networks of very low competence to compete against each other 

and to be ranked in a meaningful way. 

 

It is clear that certain classes of problems can be formulated so that truly novel 

(problem specific) intelligences can be evolved to solve them.  This is likely the case 

even for certain problems that humans do not know how to solve well.  But the 

question of generalization remains unanswered.  The complexity of evolved systems 

will likely need to be increased by many-fold in order to really address the question 

of general performance-feedback driven evolution of intelligence. 
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7.2.2 Maintenance of Memory 

Another pressing problem facing ER is that of maintenance of learned behaviors.  For 

most of the proof-of-concept work that has been done so far, this issue did not arise 

because the few sub-behaviors required to generate the behaviors in those studies 

were continually maintained every generation.   

 

In a fully evolvable system, behaviors that aren’t tested or reinforced each generation 

run the risk of being corrupted.  With black box systems, such as arbitrarily connected 

and evolvable neural networks, overcoming this problem is non-trivial.  Various 

methods such as selective attenuation of mutation rates, and the selective fixing of 

sections of networks deemed to be well trained have been suggested.   These though, 

can lead to stagnation of the leaning process.  Often, networks evolve to not evolve 

after a point, and generate results no better than those which leave un-reinforced 

behaviors vulnerable.  

 

It has also been suggested that something other than a black-box architecture be 

evolved.  Then, perhaps methods can be developed to identify which elements of the 

evolved controllers represent useful behaviors.  Unfortunately, in order to maintain 

the potential utility of ER to generate novel complex controllers automatically, any 

methods of controller analysis would have to be integrated into the fitness testing and 

propagation phases of evolution.   This brings us back to the problem of fitness 

function specification, but now this appears in the context of determining which 

portions of an evolved controller should be insulated from mutational corruption.  
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Integration of fitness evaluation over several or many trials is one viable way to 

increase the retention of acquired behaviors.  The application of this integration is 

surprisingly non-trivial.  In the work involving the evolution of checkers playing 

programs [68], fitnesses were integrated over five trials for each individual before 

ranking and selection.  Other levels of integration were not reported on.  Of course, 

computation times increase linearly with integration level.  It is not at all clear that 

benefit increases linearly with integration level, though.   

 

In the research presented in this dissertation, no fitness integration was applied.  Only 

a single tournament per generation was played before ranking and propagation (for 

the results presented in Chapters 5 and 6).  However in preliminary work, integration 

levels were tested at 5 and 10 tournaments per generation (data not shown), but these 

resulted in no increase of rate of behavior acquisition.  This was not perused in-depth 

in this research, but it is speculated that less than one beneficial mutation was found 

per generation, and that an individual receiving a beneficial mutation was usually 

selected for propagation, even if only one tournament was played.  Additionally, it 

was noted during the selection of the “best” individuals (for post-evolution testing), 

that diversity of behaviors remained quite high even in the fully evolved populations 

of controllers.  There, scores from 30 tournaments were averaged.  For every game 

initialization used during selection of the “best” controllers, there was always at least 

one individual in a given population that could win the game.  In some cases, though, 

the controller that could win one particular game was unable to win most other 
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games.  This maintenance of diversity may significantly complicate methods of 

performance integration. 

 

One method suggested here to elevate the problem of maintenance of behaviors in 

black-box controllers would be to include elements into the controller that would 

identify which portions of the controller were active during a given evaluation test.  

Then, the mutations associated with currently functioning elements could be 

identified and retained, while others, affecting inactive areas of the controllers could 

be discarded, thereby preventing corruption of any un-displayed behaviors.  This is 

suggested as an area of possible future research in Section 7.3.4.  

7.2.3 Training Plateaus 

Plateauing during training or evolution is the natural result of reinforcement learning 

methods that evaluate fitness with static functional fitness functions.  The fitness 

function will eventually be maximized (or error minimized).  In contrast, in some 

cases, relative fitness selection method methods such as co-competitive and 

competitive selection have the potential to generate increasing fitness indefinitely by 

creating an ever-increasing level of environmental difficulty (due to the increasing 

levels of competitor competence).  Even so, relative competitive methods appear to 

plateau at competent, but perhaps sub-optimal levels.  This was seen in the results 

presented in Chapters 5 and 6.  There, the best-evolved controller out of all the 

evolutions was able to play competitively with a hand-coded knowledge-based 

controller.  It is very likely that the hand-coded controller is not the best possible 

controller.  Further evolution, though, did not result in further improvement.  
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Controllers from the 450th generation were just at competent as controllers from the 

650th generation. 

 

In the long run, noise in fitness selection is likely to be a limiting factor.  Although it 

may be the case that one individual in the population is better than others, the fitness 

ranking method might be un-able to resolve the differences.  In turn, noise in 

selection is affected by some of the issues discussed in previous sections of this 

chapter, such as maintenance of beneficial behaviors. 

 

Controller architecture and evolutionary algorithm settings are also likely to play an 

important role in the process of plateauing.  In the work presented in this dissertation, 

some significant gains in evolved controller abilities were made by adjusting and 

manipulating particular elements of the algorithm.  If true competitive selection can 

be achieved, then noise in selection becomes the major limiting factor.  Basic 

evolutionary computing theory might play an important role in algorithm and 

parameter selection.  However, theory related to the dynamics of real-valued, variable 

dimension evolving systems is not well developed.  Most evolutionary computing 

theory, such as schema theory [3], relies on simplifying assumptions that virtually 

preclude its application to complex problems.   Additionally, in the controller 

architecture search spaces used in ER, the fraction of controller configurations that 

have detectable fitness approaches zero.  This does not mean that there are no fit 

solutions, rather, there are likely uncountable infinitely many fit solutions, but the set 

of fit solutions makes up an infinitesimally small proportion of the set of all possible 
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controllers (also uncountably infinite).  Because of this, many of the metrics used in 

other areas of EC are in-applicable to ER or to the evolution of continuous intelligent 

systems.  These issue have been discussed to a degree in the ER 

literature[81][47][82][92][93], but rigorous theory has not been developed [81]. 

7.2.4 Unconventional Methods 

Some of the issues raised in the previous sub-sections may be ameliorated by 

application of methods that would be considered unconventional by current 

engineering standards. 

 

For example, mechanisms could be included into artificial evolutionary simulations, 

which would allow a human to arbitrarily alter the course of an otherwise automatic 

process.  An artificial evolution process in which a human acts as the soul selective 

factor is referred to as “breeder training” and has been studied in [83][84][94].  

Partial-breeder training might serve as an alternative to incremental fitness functions, 

and also to side-step sub-optimal training plateaus.  An automatic evolutionary 

process, driven by a competitive metric could be allowed to progress with occasional 

monitoring from a human.  The human could at times choose to alter the course of 

evolution by selecting individuals bases on their observed behaviors.  In any 

generation in which a human selection was made, selected controllers would be given 

the highest fitness rating and propagated to the next generation.  Such a course of 

training has generally been considered of limited value because the process relies on 

arbitrary whim and is irreproducible.  Even so, once generated, neural controllers, 

including those generated by arbitrary means, can be duplicated and implemented on 
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many robots, even if it is not possible to exactly replicate the process that derived the 

original network.  Systems that would allow a network to be easily transferred from 

one environment or population to another to allow the application of multiple training 

methods on a single network would also fall into this class of hybrid training 

methods.  

 

An additional unconventional method of automated controller design might involve 

returning to ER’s roots in artificial life [2].  A proposed method involves evolving 

complex robot controllers in very complicated environments using a simple survival 

performance metric that requires robots to acquire “energy” to replicate.   Some such 

work has been conducted in ER and is referred to as metabolism based selection 

[12][50].  If an environment is complex enough and robots can interact with one 

another, complex behaviors have the potential to evolve over many generations.  As 

is the case with natural evolution, the particular behaviors may be difficult to predict.  

The designer would then attempt to select interesting evolved behaviors, and to build 

a library of behavioral modules that could be incorporated into other controllers, or 

used as pre-trained initial controller populations for further evolution. 

 

7.3 Future Research   

The research presented in this dissertation explored questions related to the extension 

of ER methods to the evolution of general and complex robot behaviors.  In a broader 

sense, the work addressed issues related to the automatic synthesis of embodied 
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machine intelligence.  Compared to other robotic and machine intelligence fields, ER 

is in its early stages and the opportunities for new research are many.  Several topics 

for future and related research are outlined in the remainder of this chapter. 

7.3.1 Application of Advanced Computing to ER 

Although an extensive amount of code was written to develop the software 

components used in this research, no special effort was made to optimize simulation 

code or finely tune elements of controller portability.  Incorporation of sophisticated 

software techniques (such as those used in video gaming engines) to develop very fast 

simulation environments and to include advanced sensor fusion elements would be 

very beneficial.  An increase in simulation speeds of between 100 and 10,000 times 

would allow comparative experiments to be preformed that are not feasible using the 

current platform.  Comparative experiments are used in reinforcement learning and 

other iterative machine learning systems to determine the effects and ranges of 

parameter and environmental settings.  Some work along these lines has been done in 

ER [41] but such work used very simple simulation environments, simple simulated 

sensors and small controller structures.    

 

Although not discussed in detail in the text, the ER simulation and neural computing 

environment used here generates and records numerous metrics and data over the 

course of an evolution.  These include data recording trends in network size, the ages 

of neurons within networks, mutations rates and magnitudes, selection rates, and 

population turnover points (takeover), among other data.  Much faster simulation and 

evolution speeds may allow these trend data to be correlated with evolution outcomes 
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and to be formulated into diagnostic metrics.   Such diagnostic metrics would be of 

great value to the field of ER.  Currently, ER methods are evaluated almost 

exclusively by demonstration, i.e. if a method produces a functioning controller, it is 

good.   

 

Another area in which fast computing and new hardware technologies could be 

applied to ER is in three-dimensional simulation.  In this work, as in almost all ER 

work, simulated and real robots were given a two-dimensional environment view.  

New sensors and high-quality simulations could be used to extend this research into 

three dimensions.  We propose implementing a LADAR-based [85] sensing system in 

conjunction with color overlaid from a proximal video camera to replace the existing 

two-dimensional real and simulated range sensors used by the EvBots.   This would 

allow robot controllers to receive an unprecedented level and resolution of spatial and 

object-type information from their environments.  This sensor information would be 

suitable to be fed directly into complex neural controllers. 

 

Additionally the next generation of robots, the EvBotII [77] can be equipped with 

directional sound sensor arrays and have been designed to accommodate other sensor 

modules simultaneously.   This will allow ER experiments involving sensor fusion to 

be conducted. 

7.3.2 Integrating Human and Machine Learning 

Another area of great interest is that of incorporating human behavior into evolving 

systems, not through the use of human designed and biased functional fitness 

 161 
 



A. L. Nelson, “Competitive Relative Performance and Fitness Selection for Evolutionary Robotics,” Ph.D. Dissertation, North Carolina State 
University, Raleigh, North Carolina, 2003.                                                                E-mail: alnelson@ieee.org  Web: http://www.nelsonrobotics.org  

functions, but by direct human-robot interaction.  Such methods could be used both to 

jumpstart the evolutionary process, and to distil human kinetic skills into mobile 

robots. 

 

Proposed work in the CRIM involves using humans to control robots remotely in the 

real world and in simulated environments using a simple game interface.  During this 

process, robot sensor readings and the resulting human-generated robot movement 

commands will be recorded.  These sensor readings and motor commands will be 

formulated into training data sets similar to those used in [69] and used to train neural 

controllers. 

 

In addition, a natural extension of this work would be to compete evolved controllers 

against human-controlled robots for the purposes of evaluating real-world evolved 

controller fitness.  Such work would duplicate the comparative fitness metrics 

discussed in Chapter 6, but here a human would take the place of the knowledge-

based controller.  In such a scenario, one team of EvBots would be configured with 

evolved neural controllers.  The second team would be driven remotely by humans.  

The human competitors would be physically separated from the robots and would 

make control decisions based on processed video images of the same format used by 

the evolved controllers.  The EvBot research platform is currently being upgraded to 

accommodate such experiments. 
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7.3.3 Application of the Bimodal Training Metric to Multiple Tasks 

One of the motivations behind defining a fitness function with multiple modes was to 

make it applicable to a general class of behaviors.  The initial mode of the function 

selects for the ability for move in a given environment.  It is the second mode that 

selects for performance of a given high-level task or behavior.  This second mode 

though, is purely aggregate, so it is only necessary to specify a single condition for 

success/failure to modify the bimodal function to select for a new complex behavior.  

It would be of interest to show experimentally that the metric does generalize to 

several tasks when only the single task-specific high-level success/failure binary 

element of the function is changed.   

 

One specific task that the metric might be applicable to is grouping (or flocking).  A 

limited amount of research has been done on robot flocking behaviors in ER [61][63].  

These have used complex hand-formulated functional fitness functions for selection.  

Flocking behavior can be formulated into a competitive game as follows:  many 

robots of two teams (of different colors) can be initially placed at random locations 

throughout an environment.  Robots can then be allowed to perambulate about the 

environment.  The game would be won when all of the robots from one of the teams 

had gathered together within a predefined radius. 

 

Group foraging is another possible task.  This would involve robots collecting small 

objects (often, such objects are referred to as “food” in the ER and artificial life 

literature).  Initially, food objects would be scattered randomly about an environment.  
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Robots would start in a group and move through their environment attempting to 

come in contact with as many food objects as possible.  Again, this behavior can be 

formulated into a competitive game with a binary win/lose end condition.  For 

instance, if two groups of robots are involved, an end condition could be defined as 

the point at which one or the other group has consumed 50% or more of the food 

objects.   

 

Finally, using the next generation EvBotII architecture, behaviors involving homing 

on sound sources in unknown terrain can be studied.  The Capture the Flag goal 

objects can be modified to emit a sound signal so that robots can evolve directed 

homing behaviors in complex environments.  The training fitness function could be 

applied without modification. Such experiments, would allow the effects of 

fundamentally different sensor systems on the evolution of behavior to be studied. 

7.3.4 Maintenance of Learned Behaviors in Evolution 

The final proposed area of research related to this work is focused on retention and 

maintenance of complex behaviors.  As noted earlier, complex behaviors may be 

difficult to achieve or maintain during the evolution of neural controllers because sub-

behaviors are subject to stochastic degradation if they are not reinforced every 

generation.  For many complex behaviors, sub-behaviors and simple responses may 

only occasionally be expressed.  It would be ideal if a sub-behavior or reaction once 

found, was retained without mutation until it was expressed again. 
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It is possible to formulate many intrusive and problem-specific hand-designed 

methods to improve training and retention of sub-behaviors in specific well-studied 

cases.  A human observer can identify some particular sub-behavior, and then 

formulate training conditions so that the behavior is likely to be retained.  However, 

truly automatic methods that do not rely on detailed human understanding of specific 

applications have not been well studied, at least as applied to ER. 

 

Simple integration of multiple fitness evaluation sessions during each generation has 

been used in almost all research in which reinforcement learning has been applied to 

synthesize machine intelligence.  Such integration does increase the likelihood of a 

wider spread of behaviors or reactions being expressed.  However, and perhaps 

counter-intuitively, low levels of such integration may not always result in more 

efficient selection.  As discussed in Section 7.2, this might reflect an interaction with 

a maintenance of diversity of strategies in a population.  It is likely that massive 

levels of integration, (on the order of 100 tests per individual per generation) would 

produce improved maintenance of sub-behaviors, but this would be very 

computationally expensive.  Such repeated testing is also very computationally 

wasteful because commonly expressed behaviors would be tested far more that is 

necessary to determine relative fitness.  Again, it is tempting to suggest methods that 

actively identify useful and common sub-behaviors at the functional level, and to 

explicitly reinforce them, but that would represent a reduction of the automated 

synthesis process to one of glorified optimization. 
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There is another more fundamental reason for insulating un-tested or unused elements 

of the controller structure from degradation by mutation.  There is likely an upper 

limit on the complexity of behavior that can be maintained in neural network 

structures that are mutated at a high rate.  However, mutation levels must be kept high 

enough to keep networks in exploration of their search space throughout most of their 

training.  For behavioral evolution, exploitation (sometimes called fine-tuning) plays 

a very small role, if any, in the primary synthesis process.  This is one of the 

fundamental factors that distinguishes evolutionary synthesis processes, from 

optimization and example driven training methods.   

 

To address these issues, we propose research in which evolving neural networks are 

coupled to monitoring software structures designed to identify which portions of the 

networks are active during a given evolutionary testing session.  Since behaviors are 

not likely to be localized in sub-regions within neural networks, this must be done at 

the individual neuron level.  Even at the single-neuron level, it is probably not 

possible to fully de-integrate particular behaviors.   Even so, neurons actively 

participating in the expression of a behavior will produce varying levels of output 

over the course of a testing session.  A metric can be formulated that will distinguish 

active neurons from inactive ones.  During training, this metric could be applied to 

determine which mutations are accepted, and which are discarded in the best 

performing networks in an evolving population.  
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7.4 Chapter summary 

This Chapter concludes the dissertation.  A summery of the main research results was 

presented.  In addition, current issues and unanswered questions relevant to the future 

development of the field of ER were discussed.  Finally, several suggestions for 

further research were presented. 
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