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Abstract—One of the fundamental issues in the field of 
Evolutionary Robotics (ER) is that of selection and 
formulation of an appropriate performance training metric.  
In recent years, proof-of-concept studies have shown that 
simple behavioral robotics problems, such as homing and 
foraging, are amenable to ER methods.  However, the 
question of scalability remains unresolved.  Several 
researchers have shown that straightforward ER methods 
fail to produce viable results on more complex problems if 
the problem is not partitioned or preprocessed in some 
fashion before applying ER methods.  In many cases, the 
knowledge required to preprocess the problem is equivalent 
to that which would be needed to formulate a purely rule 
knowledge-based controller, hence, in such cases, ER 
methods provide no real benefit.  In this work, we present 
research results of an investigation into the feasibility of 
using observed behavior in an environment to train artificial 
neural network-based robotic controllers to function in that 
same environment.  Robot agents were allowed to navigate 
through a selection of artificial life simulation environments 
under the influence of knowledge-based controllers.  At each 
time-step, the simulated robot sensor inputs and actuator 
outputs were recorded.   The resulting input and output data 
were used to train artificial neural network based controllers 
for the different environments.  The resulting neural 
network based controllers were then used to control robots 
in similar environments and were found to exhibit features 
of the original knowledge-based controllers. 
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I. INTRODUCTION 
 
The main goal of behavioral robotics is to develop 
intelligent control for autonomous robotic systems.  A 
fundamental issue is the form and expression of the 
behavior itself.  Various frameworks for behavioral 
robotics control have been investigated over the years (see 
[1]).  The majority of these approaches have been 
knowledge-based systems.  Recently, the field of 
evolutionary robotics has received attention as a possible 
method to achieve complex behavior in robotic systems.  
See [2] and [3] for recent reviews. 

Evolutionary robotics methods apply evolutionary 
computing techniques to develop robot control systems 
that produce a desired set of robot behaviors.  In general, 
evolutionary computing methods require the use of a 
training fitness function or objective function.  This 
fitness function is essential for evaluation of stochastic 
alterations made to potential solutions during the 
evolutionary search process.  Selection of an appropriate 
fitness function can be quite difficult for nontrivial 
behavioral problems.  Although simple robotic behaviors 
have been developed using ER methods [4-6], it has not 
yet been shown that ER methods can be used to develop 
sophisticated behavioral robotic control systems.  Various 
researchers have investigated methods such as 
incremental evolution [7][8] and minimal simulation [9]  
to overcome the problems associated with the fitness 
function formulation.  These methods offer improvements 
to the ER methods; however, it has not been shown that 
they will lead to the development of advanced behavioral 
control systems. 
 
One potential method to overcome problems associated 
with the fitness function formulation is to use artificial 
life simulations, or data derived from such simulations to 
aid in the training or evaluation of evolutionary robotics 
control systems.  Here, we address issues related to the 
acquisition of an observed behavior by methods that do 
not require explicit formulation of a problem specific 
fitness function.  We present an example of extraction of 
behavioral features using an evolutionary neural network 
system from observed behavior of robot agents in 
simulated artificial life environments.   
 
Initially, simple knowledge-based controllers were 
formulated to allow robot agents to wander around in 
simulated environments without running into obstacles or 
getting stuck on material in the environments.  These 
controllers consisted of simple sets of rules that related 
sensor inputs to wheel motor outputs, so that the motion 
of each simulated robot agent was a direct function of 
current sensor inputs.  Simulations in which robot agents 
were allowed to move about the environments under the 
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influence of these knowledge-based controllers were then 
performed.  At each time step during the simulations, all 
robot sensor inputs and associated actuator outputs were 
recorded.  The resulting data were then used to train an 
artificial neural network using supervised evolutionary 
methods similar to those described in [10].  The trained 
neural networks were used as the bases for robot agent 
controllers for use in the same simulated environments in 
which the training data were developed.  The neural 
network base controllers were able to perform similar 
object avoidance and locomotion functions as the original 
knowledge-based controllers. 
 
The method used in this work partially automates the 
specification of a domain specific training fitness 
function.  The only explicit training fitness function used 
is that of minimization of the error in reproduction of the 
mapping of the observed sensor inputs to the desired 
actuator outputs, which have been recorded as a static 
data set.  Any complexities of rule-environment 
interactions are included only implicitly in this static I/O 
mapping data set.  This reduces the need for designers to 
characterize and preprocess behavior before training a 
robotic system to reproduce that behavior.  Reducing 
preprocessing requirements would improve the efficiency 
of the design process by reducing the amount of effort 
required from human designers.  In addition, methods 
similar to the one described in this work might be applied 
to very complex systems that are not be easily 
characterized by human designers. 
 
Although the underlying behavior was generated by the 
application of a set of simple rules, the artificial neural 
network does not require these rules to be explicitly stated 
in order for it to extract the essence or features of the 
behavior and to reproduce it.   The behavior might just as 
well have been generated by unknown rules or 
uncharacterized mechanisms.  The evolutionary neural 
network was trained only with data obtained by observing 
the behavior of the robot agents.  
 

II. SIMULATION ENVIRONMENT AND ROBOTIC AGENT 
DESCRIPTION 

 
The simulation environments consist of m by m planar 
grids in which each grid element is either solid or space.  
Although the matter arrangement in each environment is 
discretized, the space itself is continuous and robot agents 
may exist at any real valued point within the range of the 
environment. 
 
In each environment, a variable number, n, of robot 
agents are maintained.  Each robot agent consists of a data 
structure that stores the robot’s current position, 
orientation, sensor input readings, and actuator output 

values.  In addition a controller structure is associated 
with each robot.  In this work, all controllers were time 
independent mappings from the robot’s sensor inputs to 
the robot’s actuator outputs and can be written in 
functional form as follows: 
 

)( ncnn f SA =            (1) 
 
where An and Sn are the sets of robot actuator and sensor 
values of the nth robot agent, respectively, and  is the 
controller mapping associated with the nth robot agent. 

cnf

 
Each robot was simulated with two motor-wheel 
actuators, one on each of the right and left sides of the 
robot.  Such a configuration allows a robot agent to turn 
in any direction or move along any diameter arc by 
varying the inputs to the wheel motors. 
 
Range finding sensors were simulated so that each sensor 
is associated with a fixed orientation with respect to the 
robot’s body frame.  Each sensor returns a scalar value 
that corresponds to the linear distance between the sensor 
and the nearest solid element directly in line with the 
sensor’s orientation.   For the work presented here, each 
robot was given seven forward facing sensors, each 
oriented at an offset of 15° from one another.   This 
produced a whisker like array of sensors centered along 
the central axis of each robot body frame.  A schematized 
top view of a robot agent and range sensor array detecting 
matter in a simulated world is shown in Figure 1.  The 
object on the left in Figure 1 is the robot agent, while the 
lines represent the magnitude and direction of current 
sensor readings.  The small blocks in the figure represent 
simulated matter. 

 
Figure 1.  Simulated robot agent with sensor and wheel actuators in 
a matter-containing environment.  The object on the left is the 
robot agent.  The lines represent the magnitude and direction of 
current sensor readings.  The small blocks represent simulated 
matter. 

 
At each simulation time step, and for each robot, the 
following actions were preformed: 
  

1. The robot sensor readings were updated. 
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2. The current sensor readings were fed into 
the associated controllers and actuator 
values were calculated and applied to the 
wheel motors. 

3. The robot’s next position was calculated as a 
function of its current position, orientation, 
the time step size, and the current wheel 
motor rates 

4. If the robot’s next position was found to lie 
within an open space grid element, the 
robots current position was updated to that 
next position, otherwise the robot’s current 
position remained unchanged. 

 
The position update function of step 3 is given 
symbolically by equation (2) below.  An, Rn and t∆  are 
the nth robot’s current actuator values, a set of physical 
parameters associated with the nth robot and the 
simulation time step size respectively.   
 

),),(),,(()1,( nnp tttnPosftnPos RA ∆=+     (2) 
 
To ensure that robot agents could not jump over or tunnel 
through physical objects in the simulation environment, 
the maximum distance traveled by each robot at any time 
step was limited to be smaller then the dimensions of a 
matter grid element. 
 
Three planar simulation environments were used for this 
work: an environment with linear walls that divide the 
space to form a maze-like structure, an environment filled 
with aggregates and clusters of matter, and an 
environment containing only space.  These are referred to 
as Maze World, Aggregate World and Empty World, 
respectively and are shown in Figure 2. 
 

 
Figure 2.  Planar simulation worlds 

 
 

III. THE NEURAL NETWORK TRAINING GENETIC 
ALGORITHM 

 
The neural network based controllers were trained using 
an evolutionary computation based procedure.  Fully 
connected single hidden layer feedforward networks were 
used.  Sigmoid activation functions were used in the 
hidden layer neurons while linear activation functions 
were used in the output neurons.  Training neural 

networks of this type involves manipulating scalar 
weighting functions that operate on the inputs and outputs 
of the individual neurons in the network.  The genetic 
algorithm used here operates directly on the neural 
network’s set of weights; hence, the chromosome data 
structure is that of a set of real-valued scalar numbers.   
 
The training data sets generated from the recorded sensor 
inputs and actuator outputs were formulated as sets of all 
input values, X, and associated outputs, Y, recorded over 
the duration of a simulation run.  Note each element of X 
is itself a set of all sensor values recorded at a particular 
time step and, likewise, each element of Y is a set of all 
actuator values recorded at a particular time step. 
 
A typical network structure of the type used in this work 
is shown in Figure 3.  The robot agent’s current sensor 
readings, x1, x2… xi are scaled by the hidden layer neuron 
weights, whin, summed and fed into each hidden neuron 
sigmoid activation function, yhid(uhid).  The summations of 
weighted inputs are given by equation (3) 

∑ ∗=
i

u
1

ininhid, )whx(   (3) 

Similarly, outputs from the hidden layer neurons are 
scaled by the output neuron weights, woim, summed, and 
feed into the output neurons.  There can be an arbitrary 
number of hidden layer neurons; however, each output 
neuron produces a single actuator value, so the number of 
output neurons matches the number of actuators in each 
robot agent. 
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Figure 3. Generalized feed-forward single hidden layer ANN. 

 
The genetic training algorithm used is a population of 
one, mutation based, greedy gradient decent algorithm 
similar to that described in [10].  Instead of using bit 
strings to represent candidate solutions, a set of real 
numbers representing the weights of the neural networks 
were used.  Using the notation of Figure 3, a chromosome 
structure is given by: 
 

]wo..., ,wo..., ,wo, wh..., ,wh..., ,wh[ im1im11in1n11=c     (4) 
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At the beginning of the training, all weights in each robot 
agent neural network are initialized with small random 
numbers.  At each iteration of the training algorithm, 
perturbations (mutations) are made randomly to one or 
more of the elements of c to make a new chromosome, c'.   
The neural net is then tested with the weights specified by 
c' and its performance is compared to that obtained with 
the weights specified by c.  If the performance is 
improved, the mutations in c' are kept; otherwise the 
original c is retained and the process is repeated.  The 
measure of quality of performance used was that of mean 
squared error, E, as: 
 

M

yy
E

M

m
jtmjm

j

∑
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−

= 1

2))()(( xx
           (5) 

 
Note ym(xj) is the output produced by the mth output 
neuron when it is presented with the jth set of training 
inputs, xj, and M is the total number of outputs. Further, 
ym is the actual output of the mth output neuron, while ytm 
is the desired, or training output of the mth output neuron 
associated with  the jth set of training inputs.   
 
During training, mutation occurs after presentation of 
each example in the training set rather that after 
presentation of the full training set.  This allows the 
solution (weight set chromosome) to step out of a local 
minimum with respect to one training example with the 
occurrence of mutation that reduces error for another 
training example. 
 
A main feature of the algorithm is that the probability of 
mutation of each number in the chromosome at each 
generation is dependant on the current quality of the 
solution (here, a solution refers to a neural net and 
associated weight set as specified by the current 
chromosome c).  Early in training when solutions are very 
poor, the mutation probability is high.  As training 
continues, and the solution becomes more refined, the 
mutation probability decrease.  The following formula 
was used to calculate the probability of mutation for each 
element of c: 
 

base

current
E

E
HB ∗+=   eProb BaseMutat MutateProb       (6) 

 
Ecurrent is the present training error, E, as calculated by 
equation (5).  In this work, Ebase was set to be the training 
error calculated at the first iteration of training.  HB is a 
scaling factor used to regulate the degree to which the 
mutation probability was affected by training error.   
Values used for HB in this work were generally close to 
unity.  BaseMutateProb, the minimum mutation  
 

probability, was set to be one mutation out of all the 
weights in c, on average.  The effect of (6) is that early in 
the training, while the error is high, the mutation 
probability is near one so that most elements of c are 
mutated at each training iteration.  As E decreases, fewer 
and fewer mutations occur during each training iteration.  
When E is very small, the BaseMutateProb term 
dominates and only 1 mutation occurs at each training 
iteration, on average. 
 
Making the mutation probability dynamic and related to 
the quality of the current solution is thought to allow 
initial, poorer solutions to move more quickly through the 
solution space.  As the solution improves, smaller steps in 
the solution space are taken.  A low mutation rate is 
desirable near the end of training as the solution is fine-
tuned.   
 
The magnitude of mutation was random, and normally 
distributed.  The center of the distribution was kept 
constant for the duration of a particular training.  For the 
work presented here, mutations magnitudes were on 
average between 1% and 5% of the weight magnitudes at 
the start of training. 
 

IV. EXPERIMENTAL PROCEDURE 
 
Three robot agent controllers were formulated for use in 
the simulated environments.  These were: a simple 
knowledge-based controller, a trained neural network 
based controller, and a random controller. 
 
Robot agents were initially controlled with a knowledge-
based controller that produced wheel speed values as a 
function of range-finding sensor input values.  Two 
simple rules were found to be sufficient to keep robot 
agents from getting stuck in most environments These are 
formulated as follows: 
 

Rule 1:  Each wheel motor speed is 
made proportional to the sum of the 
range finding sensor readings on the 
opposite side of the robot. 
 
Rule 2:  If the total sum of all the range 
finding sensor readings is less than 
some threshold, then the right hand side 
wheel motor is reversed. 

 
The effect of Rule 1 is that of causing a robot to veer 
away from objects  or to remain in the middle of a 
corridor.  Rule 2 allows the robots to escape from corners. 
 
The method used to extract behavioral traits observed in 
the robots agents operating with the knowledge-based 
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controllers was as follows. A simulation world was 
arbitrarily constructed.  Robot agents were initialized to 
random positions within the simulated world.  A 
simulation was preformed using the simple rule based 
control.  During the simulation, all robot agent sensor 
readings and associated motor output rates were recorded.  
These data were recorded as real-valued input and output 
values.  These were in turn used to train an artificial 
neural network using the supervised evolutionary training 
algorithm described in the previous section.  
 
For the work presented in this paper, the training set for 
the neural controller was derived from 50 time steps in 
Maze World.  
 
To apply the neural controllers in simulation, the robot 
sensor readings were fed into the trained neural network 
and the resulting network output values were applied to 
the wheel motors. 
 
For purposes of experimental control, a third ‘random’ 
controller was formulated.  The random controller 
produced random wheel motor rates that had no 
relationship the sensor inputs.  The wheel motor rates 
were normally distributed values around the mean of the 
robot agent speeds when operating under the knowledge-
based controller in the simulation world used to derive the 
data used to train the neural net controller. 
 

V. RESULTS 
 
Each of the three controllers were used to control robot 
agents in each of the three simulation environments.  The 
results of these simulations are presented in this section. 
 
In each simulation environment, three simulations were 
preformed, using ten robot agents in every case.  The 
positions and orientations of the robots were initialized 
randomly for each environment, but were kept the same 
for all the controllers used in a particular environment so 
that the results could be compared.  The robot agents do 
not interact; thus,  this is equivalent to ten repetitions of a 
simulation with a single agent. 
 
The Empty World and the random controller were 
included as comparative experimental controls. 
 
During each simulation, the velocity, position, and 
orientation of each of the robot agents were recorded at 
each time point.  The metric used for comparison of 
performance of the controllers was total distance traveled 
during a simulation.  For a particular environment, robot 
agents using each of the three controllers were simulated 
for an equal amount of time.  Simulation times were 100 

time steps for Empty World and 1000 time steps for Maze 
World and Aggregate World. 
 
Figure 4 presents data in bar graph form comparing the 
mean and standard deviation of distance travel by the 
robot agents during each simulation. 
 

 
Figure 4.  Mean distance traveled by robot agents using the rule-
bases controller, the random controller and the neural network 
based controller, in each of the three simulation environments 

 

VI. DISCUSSION 
 
The results shown in the first panel of Figure 4 indicate 
that all three of the controllers produce motion of the 
robot agents in Empty World.  Since there is no matter in 
this environment, the robots can travel without the need to 
avoid obstacles.  The speed of the random controller was 
set to have a mean value equal to that of the knowledge-
based controller operating in Maze World.  With the 
knowledge-based controller, wheel motor speed is 
proportional to range finder sensor input values; hence 
robots being controlled by this controller move much 
more quickly in Empty World than they do in either of the 
other environments because there is no matter to detect. 
 
In Maze World and Aggregate World, obstacle avoiding 
behavior is much more important.  The random controller 
causes the robot agents to become stuck or ensnared very 
quickly, resulting in very short net travel distances.  Both 
the knowledge-based and the neural controllers, produce 
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successful obstacle avoidance, resulting in longer total 
travel distances.  These results are shown in the second 
and third panels of Figure 4.   
 
The second panel of Figure 4 shows that the neural 
network-based controller performs as well as the 
knowledge-based controller in Maze World, although the 
variability in individual robot agent performance is 
greater, as reflected in the greater standard deviation of 
distance traveled.  The training set for the neural 
controller was derived from 50 time steps in Maze World.  
The simulations above were performed for a period of 
1000 time steps.  This indicates that, at least in Maze 
World, the neural controller was able to generalize its 
performance to many situations not seen by the training 
set data.  In fact, robots using the neural controller were 
able to operate in Maze World indefinitely without getting 
stuck on walls or in corners. 
 
In Aggregate World, the neural controller did not perform 
as well as the original rule based controller, but it did 
significantly outperform the random controller.  It is 
likely that the data set used to train the neural controller 
did not reflect some aspects of the rule base when applied 
to Aggregate World, since the training set for the neural 
controller was derived in Maze World. 
 

VII. FUTURE RESEARCH 
 
The work presented here is of a preliminary nature.  Tests 
have been conducted using the evolved neural-controllers 
in a real mobile robot platform.  This work is being 
reported in another paper that focuses on the development 
of a mobile robot platform consisting of a colony of eight 
autonomous robots.  This platform will be used to 
generate training data sets and to implement additional 
derived controllers similar to those described in this work.  
One eventual goal is to provide a method of extracting 
features of complex behavior without the need to fully 
understand or decompose that behavior.  In this work, two 
simple rules were used to produce interactions between 
simulated robot agents and various environments.  The 
expression of the rules, that is, the observed behavior, 
may be considerably more complicated than the rules 
themselves.   We used a neural network-based system to 
back-extract behavioral features from the observed 
behavior of robot agents operating under the influence of 
these simple rules.  In simple animals, such as insects, it is 
often not clear what rules are being followed in the 
expression of a particular behavior.  Back-extraction of 
the observed behavior may be very useful in the field of 
behavioral robotic as a method to develop robotic control 
systems that produce behaviors not explicitly understood 
by human designers.  

The neural network training data set was derived from the 
observed inputs and outputs of the robot agents operating 
under the influence of a simple rule set.  This need not be 
the case, however.  The robot agents could have been 
moved by an outside observer  or made to follow a 
predefined path through a particular environment; the 
resulting data set could still be used as a training set.   It is 
possible that this could be used as a method to extract 
behavior with out the need to decompose it into a rule set.   
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