
The Development of a Testbed for Evolutionary Learning Algorithms
for Mobile Robotic Colonies

1Damion Gastelum, 1Thomas Jones, 2Amit Agarwal, 2Jay Kothari, 2Supriya Bhat,

3Hong Kyu Lee, 4Edward Grant, 4Andrew Nelson, 5Stuart Rubin, and 2Gordon K. Lee

1Department of Mechanical Engineering
2Dept. of Electrical & Computer Engineering
San Diego State University
San Diego, CA 92182-1326
glee@kahuna.sdsu.edu

3Department of Electrical Engineering
Korea University of Technology and Education
Chonan P.O. Box 55, Chonan
Chungnam, 330-600, Korea

4 Department of Electrical & Computer Engineering
Center for Robotics & Intelligent Machines
North Carolina State University
Raleigh, NC 27695-7911

5SPAWAR Systems Center
53560 Hull Street
San Diego, CA USA
srubin@spawar.navy.mil

Abstract
There exist many applications in military,

commercial and civilian scenarios where multiple
robots are required to perform complex tasks in a
coordinated manner. For example, autonomous
intelligent robot colonies may be used in
reconnaissance missions or seek-and-capture
scenarios involving a complex set of interactions
between machines as well as between machines and
humans and may cover long distances to remote sites.
Because of the nature of the tasks, new classes of
robotic systems will be required that have a high
level of specification for efficiency and reliability.
This, we believe, can only be accomplished through
sophisticated intelligent control and efficient sensor
integration as an integral part of the design of the
robot and the robot's supporting systems. This paper
presents an overview of a mobile robotic system
testbed that is being developed at San Diego State
University in partnership with North Carolina State
University and SPAWAR Systems Center. Further
some initial results of our work are presented.

Key words: coordinated robots, evolutionary
algorithms, swarm technology

I. Introduction

Cooperative mobile robotic colonies, which can
be considered a subset of Unmanned Vehicles (UV),
shows great promise for the application of swarm
technology. Swarming is the result of many small,
relatively cheap, machines interacting and reacting to
local sensing to yield a global behavior. For military
applications, for example, this emergent behavior, “a
behavior that isn’t explicitly programmed, but results
as the natural interaction of multiple entities”, will be
used in the future to control complex, unmanned

systems to limit exposure of military personnel to
hostile action [1]. The proliferation of unmanned
systems not only will benefit from the application of
this biologically-inspired control strategy, but will
more than likely require its implementation to
achieve the desired cost savings goals, and
warfighting efficiencies envisioned, including
reducing fratricide (friendly-fire) incidents, improved
reduction in bandwidth requirements, and reduction
in the number of operators and support personnel.

Of the myriad UV systems in use by the
Department of Defense (DOD) today, none currently
swarm, as defined above. Many routinely launch in
an operator-controlled mode, then continue their
mission autonomously, switching back to operator
controlled mode for recovery. This is usually not a
problem when the UV is operating by itself. The
challenge is when the UV must operate with manned
vehicles or other UVs. Currently there are eleven
different DOD UAV programs in operation, and an
additional ten programs on the drawing boards [2].
They range in size from the AeroVironment Wasp
(less than one lb. and 8 in.) to the X-45C Unmanned
Combat Air Vehicle (UCAV) (35,000 lb and 36 ft.).
Over the past decade the Department of Defense has
invested over $3 billion dollars on UAVs and has
programmed over $16 billion in this decade for their
development, procurement and operations [2]. By
2010 the number of UAVs fielded by the Department
of Defense will exceed 300, not including micro and
mini UAVs. Autonomous Operations (AO)
technology, including swarming, is a capability
requirement to meet the ever-increasing numbers and
complexity of UAVs fielded [2].

The biggest gap filled in mission requirements
will be by small, mini and micro UAVs. Those
missions not practical for manned aircraft, such as

continuous perimeter defense of a ship, in port or at
sea, could be fulfilled by a swarm of small, cheap
UAVs. Such a system, equipped with explosives
detection sensors, could have prevented the USS
COLE terrorist attack [3].

To achieve the utmost benefit to the Theater
Commander, UAVs will be required to communicate
and coordinate with other UAVs and manned aircraft.
The Defense Advanced Research Projects Agency
(DARPA) and the Armed Services have formed an
Intelligent Autonomy Working Group to address this
challenge [2]. It is easily foreseeable that one solution
would be the application of Swarm Technology,
treating each vehicle, unmanned or manned as a node
in a distributed network within the battlespace
architecture.
 Future applications of Unmanned Undersea
Vehicles (UUV) is governed by the Department of
the Navy’s Unmanned Undersea Vehicles Master
Plan. The four main areas envisioned include:
Maritime Reconnaissance, Undersea Search and
Survey, Communications and Navigation Aids, Sub
Track and Trail [4]. Each, in varying degrees, are
candidates for application of Swarm Technology.
This would be manifest in autonomous swarms of
UUVs doing intelligence collection, surveillance,
area reconnaissance, performing as mobile
communications or navigation links to manned
submarines, or ultimately as unmanned sub
hunter/killers.
 This paper presents some preliminary results of
one of the many research programs that focus on
swarm technologies and discusses some of the
approaches that may be used to address on-going and
future needs.

II. Learning
 Training such multiple mobile robotic systems as
UVs in swarms is a complex task. Fundamental to
coordination of a robot colony or colonies that must
perform specific tasks is the notion of learning.
Indeed, training multiple mobile robotic systems in
swarms may appear to be as complex a problem as
herding cats. But learning implies communication,
i.e., the passing of information between machines
(intra-colony learning) as well as between machines
and humans (extra-colony learning).

 Learning in this environment may be divided
into three levels of complexity: 1) local learning, 2)
team/colony learning, and 3) multi-colony learning.
In local learning, that is, individual robot learning,
the robot must gain proficiency in performing local
tasks either through off-line training from a human
instructor or through learning from semi-independent
exploration and experimentation. By construction,
local learning usually satisfies local specific and

therefore simple tasks or problems that need to be
solved (gather temperature information, locate
nearest neighbor, for example).

In team or colony learning, robot groups must
gain proficiency in performing group tasks. The
learning can again be supervised, unsupervised or
some combination. Learning is done through
information sharing.

The most complex scenario is multi-colony
learning (more than one team or colony). In this case,
a large group of robots must communicate and share
learned strategies and the colonies may be
communicating remotely; hence there may be time
delays or other long distance communication issues
that need to be addressed.

Each robot learns about a specific task assigned
using a given learning strategy. Through its
communication agent, knowledge can be passed to a
team level learning agent. The team level learning
agent provides communication between individual
robots in a team and can serve as a coordinator,
depending upon the specific task or set or tasks to be
performed.

In this learning structure, a team or colony of
robots can use any of several learning techniques
suggested in the literature such as genetic algorithms,
neural networks, heuristics or model-based control.
Learning at the colony level can be reflected in and
mapped to an intermediate representation using a
mapping communication agent. The other teams or
colonies can translate this intermediate representation
into the appropriate form for their learning technique.
 The goal of machine learning is to tractably and
reliably acquire specific situational and
commonsense knowledge for use in problem-solving
systems. Neat systems are symbolic; scruffy systems
(e.g., neural networks) are sub-symbolic [5].
Intelligent systems that learn have become such a
prominent tool that it has increasingly taken a more
important role in almost every industry. As such, they
have to operate with great efficiency and accuracy.
This may not sound very difficult if the environment
in which they operate remains unchanged, since their
behaviors could be pre-programmed. However, if the
environment is ever changing, it becomes extremely
difficult, if not impossible, for system developers to
enumerate every possible behavior of the robot – thus
the need for learning.

There are various techniques by which the
system can learn. Evolutionary methods provide an
attractive approach as they mimic, to some extent,
biological evolution. For each generation, a
population goes through some training by performing
one or more complex tasks. A fitness function is
generated to measure the success of each individual
in the population. Part of the evolution process is that

genetic operators (crossover, mutation, reproduction)
affect the next generation. The premise is that
evolution improves a subset of the population
(survival of the fittest).

The field of evolutionary robotics has been
reviewed in recent publications [6]-[9]. Important
issues raised in this literature include 1) the
application of ER methods to more sophisticated
problems; 2) methods of performance and fitness
evaluation; 3) embodied evolution in real robots vs.
evolution in simulation; and 4) the coupling of
simulation to reality. In this paper we focus mainly
on the last issue.

III. Components of the Learning Process

The development of evolutionary robot (ER)
controllers requires formulation of three components:
(a) selection of the evolutionary parameters (e.g.,
population size, chromosome length,
encoding/decoding representations of the
chromosomes, cross-over operator, selection
operator, mutation operator); (b) fitness function
selection or generation; and (c) control structure that
uses the evolution results (e.g., neural network, fuzzy
logic, adaptive neural fuzzy inference).

The first component has generated much
research; we plan to continue with the efforts on
investigating the effects of these parameters on the
learning convergence rate. Regarding the fitness
function selection, most commonly, a task specific
fitness selection function is formulated by hand and
by trial and error. For complex behaviors, this can
require in-depth knowledge of the dynamics of the
behavior to be evolved. One method used to address
the problem of evolution of more complex behaviors
is incremental evolution [10]-[11]. Direct evaluation
by humans has also been used in some ER work
([12], for example).

However, all of these methods limit the
automation aspect that is central to ER. The
algorithm should be robust, self-learning and self
sustainable. To make it robust, robots are denied any
global information about the environment and are
limited to the information acquired by the sensors
(possibly later communication from a fellow robot).
We are developing a genetic algorithm to make it
self-learning, which means that they are bound to
make mistakes but learn from these mistakes, as
humans do. To make it self sustainable we plan to
provide it with cognitive characteristics which can
help it decide what it right and what to do under the
present circumstances.

To do this, we are using a fuzzy formulation for
mapping the correlation coefficients to a fuzzy set
through a membership function. The results of this
effort are presented in a separate paper [13].

 Finally, we are developing an adaptive neural
fuzzy control structure such that the parameters of
this ANFIS are tuned by the evolutionary process.
This is the subject of [14].

IV. The Testbed

The evolution of robot controllers requires
simulation and actual testing in the field. To address
this issue, we have developed a testbed that is based
upon the work of the Center for Robotics and
Intelligent Machines at North Carolina State
University [15]. In particular, we chose to use the
PC/104 architecture as the central computing
hardware. The baseline systems design criterion for
the CPU board and required interfaces is met by the
MZ104 MachZ. This is an embedded PC-on-a-Chip.

The mobile robotic system has two main
hardware components: the PC/104 stack and the
custom PCB. The PC/104 stack acts as the brain of
the system, running Matlab, issuing commands, and
interfacing to the camera and wireless network. The
PCB receives simple commands from the PC/104
stack and controls the locomotion mechanism
accordingly.

The PC/104 Stack consists of two connected
PC/104 boards: the MZ104 and the PCMCIA
adapter. The MZ104 is a complete computer (minus
video display), including an 8 MB bootable Disk-On-
Chip flash-chip. A USB port interfaces directly to
the USB camera for image acquisition. An RS232
serial ports interfaces to the Basic-X on the custom
PCB to control locomotion. Attached to the MZ104
via the PC/104 bus is the PCMCIA PC-Card adapter
that holds two PC-cards. The wireless Ethernet PC-
card is used to retrieve data from the self-navigation
system for monitoring purposes and for Matlab to
acquire a software-license for operation. The 96 MB
ATA-flash-card acts as primary program storage for
the system, containing a local, trimmed-down
installation of Matlab. The EvBot Matlab installation
includes the image processing toolbox and an entire
custom Linux distribution (except for the kernel,
which is booted from the 8 MB Disk-On-Chip).
 The custom PCB is specific to the mobile robots.
It is generic for any locomotion control mechanism
accepting RS232 input. In this application, it is used
for locomotion and self-navigation. This is briefly
documented here to explain system interfacing and to
clarify the overall system functionality. The PCB
contains the Basic-X connected to the two motor
drivers (dual high-current CMOS-inverters connected
to each pole of the motors). The important concept is
that the Basic-X can actuate the motors so as to move
the platform forward and backward and to turn the
platform in-place when so instructed from the MZ104

via the RS232 link. The mobile robot platform is
shown in Figure 1.

Figure 1: The Mobile Robot Platform

V. Testing and Evaluation Procedures
 Testing learning algorithms for robot colonies
can be accomplished by selecting a complex task that
the colony must perform. Many games requiring high
levels of skill can be scored in a tournament using
relatively simple and deterministic metrics
(measures), e.g., Checkers-Playing neural networks
[16], Go-Playing neural networks [17] or Capture-the
Flag [15]. In cases where at least one team or player
of an evolving population achieves a win in a
tournament, metric complexity can be reduced further
to best number of games won in a tournament.

If one employs a neural network controller,
which is typical in many evolutionary robot studies,
the acquired weights in a neural network can be
replaced with a symbolic model using a more or less
domain-specific modeling language. The model
captures features, which can be seen to provide for
accelerated learning, improved predictive accuracy,
and the potential for explanative content, which
weights cannot offer. Given a set of sensors, which
gather data over time, it is NP-hard to find
meaningful associations (i.e., features) in the data
using numeric weights. Rather than precondition the
sensory inputs, we plan to use a set of sensory models
that will evolve using a domain-specific language.
These models will evolve through competition. New
models will evolve by chance or functional
transformation. Initially, models will evolve by pure
chance, which of course is intractable in the limit.
Models will subsequently evolve through the
concomitant evolution of recursive functionals,
which map models to candidate isomorphs. This is a
heuristic process. It differs from formal logics in that
(1) it is self-organizing, (2) it is far less sensitive to
noise and missing information, (3) partial knowledge
is transferable across domains, and (4) computation is
not serially bottlenecked.

The implications for autonomous robots that
learn by doing or by being told are profound (e.g.,

fusing acquired knowledge across an autonomous
robotic swarm).

A maze has been designed, based upon the
NCSU Maze (Figure 2), which can be modified to
provide more complex and unknown obstacles for the
robots to traverse. Initially, we will use the Go-
Playing game in order to study the learning behavior
of the robot colonies. Other tasks and goal-playing
scenarios will also be employed in order to study the
learning behavior of robot colonies.

Figure 2: The NCSU Maze

VI. Preliminary Results

In order to evaluate some of the algorithms that
we are developing in support of the mobile robotics
testbed program, we developed an evolutionary-
based controller using an artificial neural network
(ANN) controller with a variable population
(chromosome) size. An initial population of two
random binary sets representing the chromosomes
were generated and used to tune the ANN controller
for learning. The main goal of this initial study is to
see how the changes in the length of chromosomes
affect the rate of learning. Once the initial population
is used to get the initial error, we used the genetic
operators to modify the characteristics of the
chromosome either by crossover or mutation.
Depending upon the crossover or mutation
probabilities, the initial population (the child) is
changed, which is then used for the next learning
process. This process continues till the stopping
criteria (in this case, a minimum error is achieved).

Though the results depend to some extent upon
the initial randomly-generated population along with
the probability for crossover and mutation, we have
observed that different length of chromosome do
affect the learning.

For a fixed set of generations, we have simulated
several different tests. Results are shown in Table 1
for a maximum of 20 generations. We noticed that as
the population size of the chromosomes is increased,
the error criteria had a higher probability of being
met in less than the maximum number of generations;

however, we also found population size lengths in
which they did not meet the required criteria in the
specified number of generations.

One observation that requires further study is
that when the population size is large enough and the
mutation probability is small enough, the genetic
algorithm converges to a global optimum (satisfies
the error criterion) with a high probability resulting in
good algorithm performance. This is subject to
further study.

Table 1: Results of Population Size Variation

Length Of
Chromosomes

Criteria
Met/not Met Comments

2 Met
Met at

generation near
20

5 Not Met
8 Not Met

10 Met
Met at

generation near
20

12 Met A bit faster met
near 18

15 Not Met

18 Met
Fastest in our
run, met near

15
20 Not Met

we noticed was that as the number of generation were
increased, they usually tended towards meeting the
criteria in less number of generations, but at the same
time there are lengths in which they did not meet the
required criteria in the specified number of
generations.
 Figure 3 shows two examples of the simulation
results using a population size of 12 and a population
size of 15. One of our tasks is to adaptively change
the population size as well as crossover and mutation
operators as part of the generation evolution.

VII. Conclusions and Future Work
In this paper, a testbed for developing evolutionary
learning algorithms for robot colonies is presented.
Mobile robots will learn to navigate through several
types of mazes. Further, software simulation modules
will also be developed to test and evaluate
competition, cooperation, and subsequent learning by
an autonomously synthesized set of software agents.
In particular, a swarm of softbots will be assigned
starting conditions and reconnaissance goals. Their
movement in the virtual world will be governed by an
externally supplied rule base.

Figure 3a: Population Size is 12. Top plots -
learning metric; bottom plots - errors

Figure 3b: Population Size is 15. Top plots -
learning metric; bottom plots - errors

In this paper, a testbed for developing

evolutionary learning algorithms for robot colonies is
presented. Mobile robots will learn to navigate
through several types of mazes. Further, software
simulation modules will also be developed to test and
evaluate competition, cooperation, and subsequent
learning by an autonomously synthesized set of
software agents. In particular, a swarm of softbots
will be assigned starting conditions and
reconnaissance goals. Their movement in the virtual
world will be governed by an externally supplied rule
set. Performance metrics will be set to encourage
cooperative behavior (i.e., transference and fusion of
acquired knowledge).

The fundamental capability for domain
transference or, “learning how to learn” can be
expected to enable the creation of truly intelligent
autopilots that take their mission orders from down-
loadable knowledge bases. The results of this on-
going effort will enable the development of robotic
reconnaissance vehicles and sensors, tactical mobile
robots, mobile command, control and
communications platforms, and targeting systems
operating on land, sea, or in the air. It is hoped that

this on-going effort will provide some insight into the
learning requirements for mobile robotic colonies.

VIII. References
1. B. Clough, “UAV Swarming? So What Are
Those Swarms, What Are The Implications, and How
Do We Handle Them?”, Air Vehicles Directorate;
Air Force Research Laboratory; Air Force Materiel
Command; Wright-Patterson Air Force Base, OH
45433-7542, AFRL-VA-WP-TP-2002-308, April
2002.
2. Unmanned Aerial Vehicles (UAV) Roadmap
2002; Office of The Secretary of Defense,
Washington D.C. Internet:
http://www.acq.osd.mil/usd/uav_roadmap.pdf, 2003
3. Homegrown, Affordable UAV Concept to be
Produced for Navy Use; Zoccola, Mary; Internet:
http://www.dt.navy.mil/pao/excerpts%20pages/2001/
UAV3_01.html, 2001.
4. The Navy Unmanned Undersea Vehicle (UUV)
Master Plan, Office of Naval Research, Washington,
D.C.; Internet:
http://www.onr.navy.mil/02/baa/expired/baa01%5F0
12/pip/uuvmp.pdf, 2002.
5. S.H. Rubin, “Computing with Words,” IEEE
Trans. Syst. Man, Cybern., vol. 29, no. 4, pp. 518-
524, 1999.
6. S.H. Rubin, “On Knowledge Amplification by
Structured Expert Randomization (KASER),” SSC-
San Diego Biennial Review, San Diego, CA, TD
3117, pp. 70-91, 2001.
7. S. Amarel, “On Representations of Problems of
Reasoning about Actions,” Machine Intelligence, vol.
3, pp. 131-171, 1968.

8. S. Nolfi and D. Floreano, Evolutionary Robotics:
the Biology, Intelligence, and Technology of Self-
organizing Machines, MIT Press, 2000.
9. Nelson, A.L., Grant, E. and Lee, G., “Using
Genetic Algorithms to Capture Behavioral Traits
Exhibited by Knowledge Based Robot Agents”,
Proceedings of the ISCA Int’l Conference on
Computers in Industry and Engineering, San Diego,
2002.
10. J-H. Lin and J.S. Vitter, “Complexity Results on
Learning by Neural Nets,” Mach. Learn., vol. 6, no.
3, pp. 211-230, 1991.
11. S.H. Rubin, “A Heuristic Logic for
Randomization in Fuzzy Mining,” J. Control and
Intelligent Systems, vol. 27, no. 1, pp. 26-39, 1999.
12. A.W. Biermann, “Automatic Programming: A
Tutorial on Formal Methodologies,” J. Symbolic
Computation, vol. 1, no. 2, pp. 119-142, 1985.
13. B. Supriya and G.K. Lee, “ Performance Metrics
for Evolutionary Controllers”, to appear, 2003.
14. J. Kothari, A. Agarwal and G.K. Lee,
“Evolutionary Learning Using an Adaptive
Population Size for an ANFIS Controller”, to appear,
2003.
15. Galeotti, J., Rhody, S., Nelson, A., Grant, E., and
Lee, G., “EvBots-The Design and Construction of a
Mobile Robot Colony for Conducting Evolutionary
Robotic Experiments, ”, Proceedings of the ISCA
Int’l Conference on Computers in Industry and
Engineering, San Diego, 2002.
16. J. Hindin, “Intelligent Tools Automate High-
Level Language Programming,” Computer Design,
vol. 25, pp. 45-56, 1986.
17. L.A. Zadeh, “Fuzzy Sets,” Information and
Control, vol. 8, pp. 338-353, 1965.

