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Abstract 
There exist many applications in military, 

commercial and civilian scenarios where multiple 
robots are required to perform complex tasks in a 
coordinated manner. For example, autonomous 
intelligent robot colonies may be used in 
reconnaissance missions or seek-and-capture 
scenarios involving a complex set of interactions 
between machines as well as between machines and 
humans and may cover long distances to remote sites.    
Because of the nature of the tasks, new classes of 
robotic systems will be required that have a high 
level of specification for efficiency and reliability.  
This, we believe, can only be accomplished through 
sophisticated intelligent control and efficient sensor 
integration as an integral part of the design of the 
robot and the robot's supporting systems. This paper 
presents an overview of a mobile robotic system 
testbed that is being developed at San Diego State 
University in partnership with North Carolina State 
University and SPAWAR Systems Center. Further 
some initial results of our work are presented. 
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I. Introduction 

Cooperative mobile robotic colonies, which can 
be considered a subset of  Unmanned Vehicles (UV), 
shows great promise for the application of swarm 
technology.  Swarming is the result of many small, 
relatively cheap, machines interacting and reacting to 
local sensing to yield a global behavior.  For military 
applications, for example, this emergent behavior, “a 
behavior that isn’t explicitly programmed, but results 
as the natural interaction of multiple entities”, will be 
used in the future to control complex, unmanned 

systems to limit exposure of military personnel to 
hostile action [1]. The proliferation of unmanned 
systems not only will benefit from the application of 
this biologically-inspired control strategy, but will 
more than likely require its implementation to 
achieve the desired cost savings goals, and 
warfighting efficiencies envisioned, including 
reducing fratricide (friendly-fire) incidents, improved 
reduction in bandwidth requirements, and reduction 
in the number of operators and support personnel.  

Of the myriad UV systems in use by the 
Department of Defense (DOD) today, none currently 
swarm, as defined above.  Many routinely launch in 
an operator-controlled mode, then continue their 
mission autonomously, switching back to operator 
controlled mode for recovery.  This is usually not a 
problem when the UV is operating by itself.  The 
challenge is when the UV must operate with manned 
vehicles or other UVs.  Currently there are eleven 
different DOD UAV programs in operation, and an 
additional ten programs on the drawing boards [2]. 
They range in size from the AeroVironment Wasp 
(less than one lb. and 8 in.) to the X-45C Unmanned 
Combat Air Vehicle (UCAV) (35,000 lb and 36 ft.).  
Over the past decade the Department of Defense has 
invested over $3 billion dollars on UAVs and has 
programmed over $16 billion in this decade for their 
development, procurement and operations [2].  By 
2010 the number of UAVs fielded by the Department 
of Defense will exceed 300, not including micro and 
mini UAVs.  Autonomous Operations (AO) 
technology, including swarming, is a capability 
requirement to meet the ever-increasing numbers and 
complexity of UAVs fielded [2]. 

The biggest gap filled in mission requirements 
will be by small, mini and micro UAVs.  Those 
missions not practical for manned aircraft, such as 



continuous perimeter defense of a ship, in port or at 
sea, could be fulfilled by a swarm of small, cheap 
UAVs.  Such a system, equipped with explosives 
detection sensors, could have prevented the USS 
COLE terrorist attack [3].    

To achieve the utmost benefit to the Theater 
Commander, UAVs will be required to communicate 
and coordinate with other UAVs and manned aircraft.  
The Defense Advanced Research Projects Agency 
(DARPA) and the Armed Services have formed an 
Intelligent Autonomy Working Group to address this 
challenge [2]. It is easily foreseeable that one solution 
would be the application of Swarm Technology, 
treating each vehicle, unmanned or manned as a node 
in a distributed network within the battlespace 
architecture. 
  Future applications of Unmanned Undersea 
Vehicles (UUV) is governed by the Department of 
the Navy’s Unmanned Undersea Vehicles Master 
Plan.  The four main areas envisioned include: 
Maritime Reconnaissance, Undersea Search and 
Survey, Communications and Navigation Aids, Sub 
Track and Trail [4].  Each, in varying degrees, are 
candidates for application of Swarm Technology.  
This would be manifest in autonomous swarms of 
UUVs doing intelligence collection, surveillance, 
area reconnaissance, performing as mobile 
communications or navigation links to manned 
submarines, or ultimately as unmanned sub 
hunter/killers. 
 This paper presents some preliminary results of 
one of the many research programs that focus on 
swarm technologies and discusses some of the 
approaches that may be used to address on-going and 
future needs. 
 
II. Learning 
 Training such multiple mobile robotic systems as 
UVs in swarms is a complex task. Fundamental to 
coordination of a robot colony or colonies that must 
perform specific tasks is the notion of learning. 
Indeed, training multiple mobile robotic systems in 
swarms may appear to be as complex a problem as 
herding cats. But learning implies communication, 
i.e., the passing of information between machines 
(intra-colony learning) as well as between machines 
and humans (extra-colony learning). 

 Learning in this environment may be divided 
into three levels of complexity: 1) local learning, 2) 
team/colony learning, and 3) multi-colony learning. 
In local learning, that is, individual robot learning, 
the robot must gain proficiency in performing local 
tasks either through off-line training from a human 
instructor or through learning from semi-independent 
exploration and experimentation. By construction, 
local learning usually satisfies local specific and 

therefore simple tasks or problems that need to be 
solved (gather temperature information, locate 
nearest neighbor, for example). 

In team or colony learning, robot groups must 
gain proficiency in performing group tasks. The 
learning can again be supervised, unsupervised or 
some combination. Learning is done through 
information sharing. 

The most complex scenario is multi-colony 
learning (more than one team or colony). In this case, 
a large group of robots must communicate and share 
learned strategies and the colonies may be 
communicating remotely; hence there may be time 
delays or other long distance communication issues 
that need to be addressed. 

Each robot learns about a specific task assigned 
using a given learning strategy. Through its 
communication agent, knowledge can be passed to a 
team level learning agent. The team level learning 
agent provides communication between individual 
robots in a team and can serve as a coordinator, 
depending upon the specific task or set or tasks to be 
performed. 

In this learning structure, a team or colony of 
robots can use any of several learning techniques 
suggested in the literature such as genetic algorithms, 
neural networks, heuristics or model-based control.  
Learning at the colony level can be reflected in and 
mapped to an intermediate representation using a 
mapping communication agent. The other teams or 
colonies can translate this intermediate representation 
into the appropriate form for their learning technique. 
 The goal of machine learning is to tractably and 
reliably acquire specific situational and 
commonsense knowledge for use in problem-solving 
systems. Neat systems are symbolic; scruffy systems 
(e.g., neural networks) are sub-symbolic [5]. 
Intelligent systems that learn have become such a 
prominent tool that it has increasingly taken a more 
important role in almost every industry. As such, they 
have to operate with great efficiency and accuracy. 
This may not sound very difficult if the environment 
in which they operate remains unchanged, since their 
behaviors could be pre-programmed. However, if the 
environment is ever changing, it becomes extremely 
difficult, if not impossible, for system developers to 
enumerate every possible behavior of the robot – thus 
the need for learning.  

There are various techniques by which the 
system can learn. Evolutionary methods provide an 
attractive approach as they mimic, to some extent, 
biological evolution. For each generation, a 
population goes through some training by performing 
one or more complex tasks. A fitness function is 
generated to measure the success of each individual 
in the population. Part of the evolution process is that 



genetic operators (crossover, mutation, reproduction) 
affect the next generation. The premise is that 
evolution improves a subset of the population 
(survival of the fittest).  

The field of evolutionary robotics has been 
reviewed in recent publications [6]-[9].  Important 
issues raised in this literature include 1) the 
application of ER methods to more sophisticated 
problems; 2) methods of performance and fitness 
evaluation; 3) embodied evolution in real robots vs. 
evolution in simulation; and 4) the coupling of 
simulation to reality.  In this paper we focus mainly 
on the last issue. 
 
III. Components of the Learning Process 

The development of evolutionary robot  (ER) 
controllers requires formulation of three components: 
(a) selection of the evolutionary parameters (e.g., 
population size, chromosome length, 
encoding/decoding representations of the 
chromosomes, cross-over operator, selection 
operator, mutation operator); (b) fitness function 
selection or generation; and (c) control structure that 
uses the evolution results (e.g., neural network, fuzzy 
logic, adaptive neural fuzzy inference).   

The first component has generated much 
research; we plan to continue with the efforts on 
investigating the effects of these parameters on the 
learning convergence rate. Regarding the fitness 
function selection, most commonly, a task specific 
fitness selection function is formulated by hand and 
by trial and error.  For complex behaviors, this can 
require in-depth knowledge of the dynamics of the 
behavior to be evolved.  One method used to address 
the problem of evolution of more complex behaviors 
is incremental evolution [10]-[11].  Direct evaluation 
by humans has also been used in some ER work 
([12], for example).   

However, all of these methods limit the 
automation aspect that is central to ER. The 
algorithm should be robust, self-learning and self 
sustainable. To make it robust, robots are denied any 
global information about the environment and are 
limited to the information acquired by the sensors 
(possibly later communication from a fellow robot). 
We are developing a genetic algorithm to make it 
self-learning, which means that they are bound to 
make mistakes but learn from these mistakes, as 
humans do. To make it self sustainable we plan to 
provide it with cognitive characteristics which can 
help it decide what it right and what to do under the 
present circumstances. 

To do this, we are using a fuzzy formulation for 
mapping the correlation coefficients to a fuzzy set 
through a membership function. The results of this 
effort are presented in a separate paper [13]. 

 Finally, we are developing an adaptive neural 
fuzzy control structure such that the parameters of 
this ANFIS are tuned by the evolutionary process.  
This is the subject of [14]. 
 
IV. The Testbed 

The evolution of robot controllers requires 
simulation and actual testing in the field.  To address 
this issue, we have developed a testbed that is based 
upon the work of the Center for Robotics and 
Intelligent Machines at North Carolina State 
University [15]. In particular, we chose to use the 
PC/104 architecture as the central computing 
hardware.  The baseline systems design criterion for 
the CPU board and required interfaces is met by the 
MZ104 MachZ. This is an embedded PC-on-a-Chip.  

The mobile robotic system has two main 
hardware components:  the PC/104 stack and the 
custom PCB.  The PC/104 stack acts as the brain of 
the system, running Matlab, issuing commands, and 
interfacing to the camera and wireless network.  The 
PCB receives simple commands from the PC/104 
stack and controls the locomotion mechanism 
accordingly. 

The PC/104 Stack consists of two connected 
PC/104 boards:  the MZ104 and the PCMCIA 
adapter.  The MZ104 is a complete computer (minus 
video display), including an 8 MB bootable Disk-On-
Chip flash-chip.  A USB port interfaces directly to 
the USB camera for image acquisition.  An RS232 
serial ports interfaces to the Basic-X on the custom 
PCB to control locomotion.  Attached to the MZ104 
via the PC/104 bus is the PCMCIA PC-Card adapter 
that holds two PC-cards.  The wireless Ethernet PC-
card is used to retrieve data from the self-navigation 
system for monitoring purposes and for Matlab to 
acquire a software-license for operation. The 96 MB 
ATA-flash-card acts as primary program storage for 
the system, containing a local, trimmed-down 
installation of Matlab.  The EvBot Matlab installation 
includes the image processing toolbox and an entire 
custom Linux distribution (except for the kernel, 
which is booted from the 8 MB Disk-On-Chip).   
 The custom PCB is specific to the mobile robots.  
It is generic for any locomotion control mechanism 
accepting RS232 input.  In this application, it is used 
for locomotion and self-navigation. This is briefly 
documented here to explain system interfacing and to 
clarify the overall system functionality.  The PCB 
contains the Basic-X connected to the two motor 
drivers (dual high-current CMOS-inverters connected 
to each pole of the motors).  The important concept is 
that the Basic-X can actuate the motors so as to move 
the platform forward and backward and to turn the 
platform in-place when so instructed from the MZ104 



via the RS232 link. The mobile robot platform is 
shown in Figure 1. 
 

 
Figure 1:  The Mobile Robot Platform 

 
V. Testing and Evaluation Procedures 
 Testing learning algorithms for robot colonies 
can be accomplished by selecting a complex task that 
the colony must perform. Many games requiring high 
levels of skill can be scored in a tournament using 
relatively simple and deterministic metrics 
(measures), e.g., Checkers-Playing neural networks 
[16], Go-Playing neural networks [17] or Capture-the 
Flag [15].  In cases where at least one team or player 
of an evolving population achieves a win in a 
tournament, metric complexity can be reduced further 
to best number of games won in a tournament.   

If one employs a neural network controller, 
which is typical in many evolutionary robot studies, 
the acquired weights in a neural network can be 
replaced with a symbolic model using a more or less 
domain-specific modeling language. The model 
captures features, which can be seen to provide for 
accelerated learning, improved predictive accuracy, 
and the potential for explanative content, which 
weights cannot offer. Given a set of sensors, which 
gather data over time, it is NP-hard to find 
meaningful associations (i.e., features) in the data 
using numeric weights. Rather than precondition the 
sensory inputs, we plan to use a set of sensory models 
that will evolve using a domain-specific language. 
These models will evolve through competition. New 
models will evolve by chance or functional 
transformation. Initially, models will evolve by pure 
chance, which of course is intractable in the limit. 
Models will subsequently evolve through the 
concomitant evolution of recursive functionals, 
which map models to candidate isomorphs. This is a 
heuristic process. It differs from formal logics in that 
(1) it is self-organizing, (2) it is far less sensitive to 
noise and missing information, (3) partial knowledge 
is transferable across domains, and (4) computation is 
not serially bottlenecked. 

The implications for autonomous robots that 
learn by doing or by being told are profound (e.g., 

fusing acquired knowledge across an autonomous 
robotic swarm). 

A maze has been designed, based upon the 
NCSU Maze (Figure 2), which can be modified to 
provide more complex and unknown obstacles for the 
robots to traverse. Initially, we will use the Go-
Playing game in order to study the learning behavior 
of the robot colonies. Other tasks and goal-playing 
scenarios will also be employed in order to study the 
learning behavior of robot colonies. 

Figure 2: The NCSU Maze 
 
VI. Preliminary Results 

In order to evaluate some of the algorithms that 
we are developing in support of the mobile robotics 
testbed program, we developed an evolutionary-
based controller using an artificial neural network 
(ANN) controller with a variable population 
(chromosome) size. An initial population of two 
random binary sets representing the chromosomes 
were generated and used to tune the ANN controller 
for learning. The main goal of this initial study is to 
see how the changes in the length of chromosomes 
affect the rate of learning. Once the initial population 
is used to get the initial error, we used the genetic 
operators to modify the characteristics of the 
chromosome either by crossover or mutation. 
Depending upon the crossover or mutation 
probabilities, the initial population (the child) is 
changed, which is then used for the next learning 
process. This process continues till the stopping 
criteria (in this case, a minimum error is achieved).  

Though the results depend to some extent upon 
the initial randomly-generated population along with 
the probability for crossover and mutation, we have 
observed that different length of chromosome do 
affect the learning.  

For a fixed set of generations, we have simulated 
several different tests. Results are shown in Table 1 
for a maximum of 20 generations. We noticed that as 
the population size of the chromosomes is increased, 
the error criteria had a higher probability of being 
met in less than the maximum number of generations; 



however, we also found population size lengths in 
which they did not meet the required criteria in the 
specified number of generations. 

One observation that requires further study is 
that when the population size is large enough and the 
mutation probability is small enough, the genetic 
algorithm converges to a global optimum (satisfies 
the error criterion) with a high probability resulting in 
good algorithm performance. This is subject to 
further study. 
 

Table 1: Results of Population Size Variation 
 
Length Of 
Chromosomes 

Criteria 
Met/not Met Comments 

2 Met 
Met at 

generation near 
20 

5 Not Met  
8 Not Met  

10 Met 
Met at 

generation near 
20 

12 Met A bit faster met 
near 18 

15 Not Met  

18 Met 
Fastest in our 
run, met near 

15 
20 Not Met  
  
we noticed was that as the number of generation were 
increased, they usually tended towards meeting the 
criteria in less number of generations, but at the same 
time there are lengths in which they did not meet the 
required criteria in the specified number of 
generations. 
 Figure 3 shows two examples of the simulation 
results using a population size of 12 and a population 
size of 15. One of our tasks is to adaptively change 
the population size as well as crossover and mutation 
operators as part of the generation evolution. 
 
VII. Conclusions and Future Work 
In this paper, a testbed for developing evolutionary 
learning algorithms for robot colonies is presented. 
Mobile robots will learn to navigate through several 
types of mazes. Further, software simulation modules 
will also be developed to test and evaluate 
competition, cooperation, and subsequent learning by 
an autonomously synthesized set of software agents. 
In particular, a swarm of  softbots will be assigned 
starting conditions and reconnaissance goals. Their 
movement in the virtual world will be governed by an 
externally supplied rule base. 

 
Figure 3a: Population Size is 12. Top plots  - 
learning metric; bottom plots - errors 

Figure 3b: Population Size is 15. Top plots - 
learning metric; bottom plots - errors 

 
In this paper, a testbed for developing 

evolutionary learning algorithms for robot colonies is 
presented. Mobile robots will learn to navigate 
through several types of mazes. Further, software 
simulation modules will also be developed to test and 
evaluate competition, cooperation, and subsequent 
learning by an autonomously synthesized set of 
software agents. In particular, a swarm of  softbots 
will be assigned starting conditions and 
reconnaissance goals. Their movement in the virtual 
world will be governed by an externally supplied rule 
set. Performance metrics will be set to encourage 
cooperative behavior (i.e., transference and fusion of 
acquired knowledge).  

The fundamental capability for domain 
transference or, “learning how to learn” can be 
expected to enable the creation of truly intelligent 
autopilots that take their mission orders from down-
loadable knowledge bases. The results of this on-
going effort will enable the development of robotic 
reconnaissance vehicles and sensors, tactical mobile 
robots, mobile command, control and 
communications platforms, and targeting systems 
operating on land, sea, or in the air. It is hoped that 



this on-going effort will provide some insight into the 
learning requirements for mobile robotic colonies. 
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