
Dynamic Leadership Protocol for S-nets

Gregory J. Barlow1, Thomas C. Henderson2, Andrew L. Nelson1, and Edward Grant1

1 Center for Robotics and Intelligent Machines, Department of Electrical and

Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911

{gjbarlow, alnelso2, egrant}@ncsu.edu
2 School of Computing, University of Utah, Salt Lake City, UT 84112

tch@cs.utah.edu

Abstract— Smart Sensor Networks (S-nets) are groups of sta-
tionary agents (S-elements) which provide distributed sensing,
computation, and communication in an environment. In order
to integrate information from individual agents and to efficiently
transmit this information to other agents, these devices must be
able to create local groups (S-clusters). A leadership protocol
that creates static clusters has been previously proposed. Here,
we further develop this protocol to allow for dynamic cluster
updating. This accommodates on-the-fly network re-organization
in response to environmental disturbances or the gain or loss of
S-elements. We outline an informal argument for the correctness
of this revised protocol. We describe our embedded system
implementation of the leadership protocol in simulation and using
a colony of robots. Finally, we present results demonstrating both
implementations.

I. INTRODUCTION

While mobile robots may be provided with a large amount

of on-board sensing [1] in order to acquire information about

their environment, it is also possible to distribute sensing

among agents in the environment. One such approach to

distributed sensing is the Smart Sensor Network, or S-net.

An S-net is composed of individual agents, called S-elements,

which can compute, communicate, and sense the environment.

S-nets have distributed computational capabilities and can

provide processed data to mobile robots. Experiments have

been performed in simulation to evaluate the utility of the S-

net approach, and performance advantages compared to using

only on-board sensors have been shown for certain cases [2]–

[4].

Distributed sensing within an environment has a large

number of potential applications. Because sensing is spatially

distributed, S-nets are well suited to gradient calculation. For

example, if robots were used to aid in fighting forest fires, and

sensors could be distributed across the environment, an S-net

could be used to identify hot spots and temperature gradients,

aiding the deployment and movement of mobile agents [2].

S-nets can also be used as a distributed communications

network. The use of digital pheromones has been proposed as

an effective way to achieve distributed communication between

agents in an environment [5]. S-nets are particularly well suited

to this application; as a smart sensor, each S-element is capable

of sensing, communication, and computation independent of

other agents.

One of the distributed algorithms necessary for S-nets is an

algorithm for S-cluster formation. For a very simple sensor

network, mobile robots could communicate individually with

all sensors in the environment. However, to enable distributed

computation and to reduce the amount of communication a

mobile agent must have with the S-net, grouping the individual

S-elements into clusters with leaders is desirable. Mobile

robots can then communicate with S-net leaders in order to

acquire sensory information from the S-net. A solution to

this leadership problem that forms static S-clusters has been

presented in [6].

S-elements have the ability to communicate within a re-

stricted range, have a fixed location, and have a unique integer

identifier (ID number). The S-elements that make up the S-net

should be grouped into S-clusters such that each leader has the

lowest ID number in the cluster and is able to communicate

with all the follower S-elements in the cluster. Followers are

not necessarily able to communicate with all members of the

S-cluster; it is only necessary for followers to be able to

communicate with the S-cluster leader.

In this paper, we extend the static cluster leadership protocol

to allow for dynamic cluster updating as S-elements are added

and removed. This extension of the algorithm is designed to

be asynchronous for use in embedded systems. We present

the dynamic cluster leadership protocol, outline an argument

for the correctness of the algorithm, and describe its imple-

mentation, both in simulation and using a colony of robots as

S-elements. Results of both implementations are presented.

II. LEADERSHIP PROTOCOL

An S-net system can be represented as an undirected graph

where each node is an S-element and two connected nodes

are within communication range of each other. Each node

can be realized a number of ways. Previous simulations

implemented each node as a unique Unix process. The current

implementation uses a colony of small autonomous robots with

communications abilities. Each S-element is implemented as

an individual robot controller. Robot controllers can run either

on real robots or within simulated robot agents.

In the static cluster case, the S-net leadership (SNL) al-

gorithm [6] is run once in order to establish the clusters,

and does not contain provisions for dynamically updating the

clusters. After the clusters are resolved, clusters are used for

local integration of information collected by the individual

S-elements. This information integration is task dependent.

Because the clusters are static, if any S-elements are added

or removed no changes are made to the clusters. If a leader

is removed, the performance of the S-net could be severely

degraded, as the sensory data from all of its followers would

be lost. The improved algorithm presented in this paper allows

for dynamic updating of the clusters.
While the static SNL algorithm uses broadcast and receive

functions for communication, the dynamic S-net leadership

(DSNL) algorithm is designed to use directed node to node

communications, with the ability to send messages to other

agents, read messages sent by other agents from a queue, and

query other nodes. This change was made primarily for ease of

implementation, as the simulation environment and the colony

of robots used as S-elements all have the capability to do

node to node communication. This algorithm could also be

implemented using broadcast communications.
The list of nodes in communication range is updated dynam-

ically outside of the leadership algorithm. This is done using

broadcast functions in a similar manner to SNL. Lists of nodes

in the cluster, nodes not in the cluster, and unresolved nodes are

kept by each node individually. Leaders are the only nodes that

have full cluster lists; cluster lists for follower nodes include

only the leader and the node itself. Cluster lists are updated at

each iteration of the algorithm, so if a leader or a follower is

removed, the affected nodes are aware. If a leader is removed,

all of the followers in the cluster are reset and renegotiate their

leadership status. In the case where followers are removed, the

leader removes those nodes from its cluster list. There is no exit

path from the leader state because clusters with only a single

member are acceptable, so once a node becomes a leader, it

can never become a follower.
Unlike SNL, DSNL has the added ability to control the

process of claiming followers (Step 3.2.2 below). In the

simplest case, followers join the cluster of the first leader to be

asserted, with the lowest ID number winning in the case of a

tie. While this is the default behavior in DSNL, this behavior

could be altered to choose between multiple leaders asserting a

claim based on factors such as preferring either large or small

networks.
The dynamic S-net leadership algorithm (DSNL) is executed

by each node. An outline of the algorithm is as follows:

DSNL Algorithm

1) Update the lists of nodes

1.1) Update the list of all nodes

1.2) Update the list of nodes in the cluster, the list of

nodes not in the cluster, and the list of remaining

nodes.

1.3) If the node is a leader, check all messages to

see if any nodes have changed from claimed to

unclaimed.

2) If the node is not a leader and has no leader in its cluster

list, reset the node to be unresolved.

2.1) If the node has just become leaderless, notify all

other nodes that this node is unclaimed.

2.2) If the node’s ID number is the lowest in the list of

remaining nodes, set node to be a leader

3) If the list of remaining nodes isn’t empty

3.1) If the node is a leader, for all nodes in the list of

remaining nodes, claim those nodes that are not yet

claimed, and update the node’s state. Once the list

of remaining nodes is empty, the node is resolved.

3.2) If the node is not a leader

3.2.2) If the node is not resolved, check all messages

to see if this node has been claimed by a leader.

If so, add the leader to the cluster list and make

the node resolved.

3.2.2) If the node is not yet resolved, check each node

in the list of remaining nodes and move all

nodes that have been claimed to the noncluster

list.

4) If the node is resolved

4.1) If the node is a leader, execute the task specific

code for leader nodes

4.2) If the node is a follower, execute the task specific

code for follower nodes

The state of each node includes:

id_numi node i’s unique identity number.

leader a Boolean, indicates whether or not the node is

currently a leader.

resolved a Boolean, indicates whether the node has resolved

as either a leader or a follower.

nodelist list of all nodes in communications range, it is

initialized before the algorithm begins, and can

change over time.

remaining list of nodes whose status is still unresolved,

initially equal to nodelist.

cluster list of nodes in the cluster, initially null. For a

leader, this list contains all nodes in the cluster,

for a follower, this list only contains the leader

and itself.

lastcluster list of nodes in the cluster after the previous

iteration of the algorithm. This is used to track

when a follower becomes leaderless.

noncluster list of nodes that are resolved, but not in the

cluster, initially null. For a leader, this list

contains all nodes within communications range

that are not in the cluster, for a follower, this list

contains all nodes except the leader and itself.

The full transition function for DSNL is shown below. The

steps are identical to those in the algorithm outlined above,

but all state updates are shown.

// Step 1

// Step 1.1

update nodelist

// Step 1.2

lastcluster = cluster

cluster = intersect(nodelist, cluster)

noncluster = intersect(nodelist, noncluster)

remaining = nodelist - cluster - noncluster

// Step 1.3

if leader

for each message in queue

if sender is in noncluster

if message is a claimed status change

noncluster -= sender

remaining += sender

// Step 2

if (!leader & (cluster == null))

resolved = false

noncluster = null

remaining = nodelist

// Step 2.1

if (lastcluster != null)

send_unclaimed(nodelist)

// Step 2.2

if (id_num(self) < min(id_num(remaining)))

leader = true

resolved = true

// Step 3

if (remaining != null)

// Step 3.1

if leader

for each node in remaining

if (current == self)

cluster += current

remaining -= current

else

if claimed(current)

if (leader(current) == self)

cluster += current

remaining -= current

else

noncluster += current

remaining -= current

else

claim(current)

// Step 3.2

else

// Step 3.2.1

if !resolved

for each message in queue

if sender is in nodelist

if message is a claim

cluster = leader

resolved = true

noncluster += remaining - leader

remaining = null

// Step 3.2.2

if !resolved

for each node in remaining

if claimed(current)

remaining -= current

noncluster += current

// Step 4

if resolved

// Step 4.1

if leader

perform the duties of a leader

// Step 4.2

else

perform the duties of a follower

III. CORRECTNESS

The algorithm should achieve the following five objectives:

1) leader = true, cluster = self and all followers

for any node that has the lowest ID number of all

unresolved nodes in communication range.

2) leader = false, cluster = leader

for any node that is within communication range of a

leader.

3) resolved = true

for every node.

4) cluster ⊂ nodelist

5) cluster 6= Ø

if the node is resolved.

The first three objectives are similar to those defined for the

original SNL, but the last two objectives are unique to DSNL.

Theorem 1: The algorithm will resolve with leader = true,

cluster = self and all followers for any node that has the lowest

ID number of all unresolved nodes in communication range at

some point in time.

Proof: Suppose that node i has the lowest ID number

of any of the nodes in communication range. The first time

the DSNL algorithm is executed, the node will execute Step

2. In Step 2.2, id_numi = min(remaining). Node i then

sets leader = true and begins to claim the other nodes in

remaining.

Suppose that node i does not have the lowest ID number of

any of the other nodes in communication range, but all nodes

with lower ID numbers than i are within communication range

of nodes that assert themselves as leaders. While those nodes

with lower ID numbers than i are still unresolved, i will remain

unresolved as well, since its ID number will not be the lowest

in remaining. Once all nodes with lower ID numbers than i

are resolved as followers, node i will set leader = true and

begin to claim any unresolved nodes.

Theorem 2: The algorithm will resolve with leader = false,

cluster = leader for any node that is within communication

range of a leader.

Proof: Suppose that node i is within communication

range of a node which eventually resolves as a leader. As long

as node i is unresolved, the test in Step 2 will be true, since

cluster will be empty. Once a node within communication

range of i becomes a leader, this leader node will try to claim

i. When node i runs Step 3.2.1, there will be a message from

this leader node claiming i, which will resolve i. If more than

one node claims i, the node that claimed it first or the node

with the lowest ID number, in that order, will become node

i’s leader.

Suppose a new node is added after other nodes have

previously resolved. The same process applies as if the node

had been added as the same time as the other nodes. Because

all nodes add new nodes to remaining even after becoming

resolved, and leaders continue to attempt to claim nodes after

becoming resolved, a node that is added within range of a

leader will eventually resolve as a follower.

Suppose a node’s leader is removed. The node will reset

its own state in Step 2, and then send a message to all

nodes in nodelist to notify them of the change in Step 2.1.

Then, the same process as above applies, where leader nodes

within range, after adding the node to remaining in Step 1.3,

will attempt to claim the node, unless the node now has the

lowest ID number of unresolved nodes in range, in which case

Theorem 1 applies.

Theorem 3: Within a finite number of iterations, resolved =

true for every node.

Proof: Every node is either a leader or is within com-

munication range of a leader. Hence, all nodes are subject to

either Theorem 1 or 2. In either case, resolved = true.

Theorem 4: During every iteration, cluster ⊂ nodelist for

all nodes.

Proof: Suppose one of the followers in a cluster is

removed. In this case, the leader of that cluster should remove

the follower from the cluster list. This occurs in Step 1.2,

where the lists of nodes are updated. Because cluster =
intersect(cluster, nodelist) the cluster is always set to be

a subset of the nodelist every time the DSNL algorithm is

executed, and cluster is always a subset of nodelist.

Theorem 5: If a node is resolved, then cluster 6= Ø.

Proof: Suppose a leader node is removed. When this

occurs, cluster = Ø for all of the followers in the cluster.

The next time the DSNL algorithm is executed, Step 2 is true,

because for all the followers, cluster is reduced to the null

set in Step 1.2. In Step 2, these nodes would set resolved =
false, which would restart the DSNL algorithm and subject

these nodes to either Theorem 1 or 2.

TABLE I

NODE POSITIONS FOR EXAMPLE 1

Node X Y

1 20.25 119.25
2 58.5 21.375
3 110.25 128.25
4 83.25 72

IV. IMPLEMENTATION

We have implemented this algorithm both in simulation and

on a colony of robots, where each robot is used as an S-

element. Both implementations use identical communication

functions. Communication occurs by transferring files contain-

ing messages between nodes.

In the implementation of the DSNL algorithm in simulation,

all S-elements run on a single computer using Matlab for the

simulation. Each S-element has distinct state information. Dur-

ing each iteration, an S-element updates its sensor information,

updates its communications, and then runs a controller, which

in this case is the DSNL algorithm. Information is exchanged

between nodes in two ways, queries and messages. Every node

may make certain information available to other nodes, for

example, the claimed status of the node. This information

may be queried at any time during the controller cycle by

the other nodes. Messages may be sent at any point when the

controller is running, but the message queue on each robot

is only re-indexed at the beginning of each iteration. While

iterations are synchronized in simulation for convenience, the

communications model was designed to be asynchronous.

The same agent architecture is used for the implementation

of the DSNL algorithm on a colony of robots. Each robot is

completely autonomous, with on-board computation, sensing,

and communications abilities [7]. The robots use PC/104

hardware, with USB CCD cameras for sensing, and wireless

Ethernet for communication. Infinite Atom Linux 2.0, based on

Red Hat Linux 8.0, is installed on all the robots, and Matlab

5.3 is used to run the controller. Unlike in simulation, the

embedded system communications are asynchronous.

Experiments with both the simulated and embedded imple-

mentations verify the performance of the DSNL algorithm.

These experiments were designed to test the ability of the

algorithm to achieve the goals outlined in Section III. In all

cases the DSNL algorithm was able to fulfill the specified

goals.

A. Example 1

As an example system, suppose we have the arrangement

of S-elements shown in Figure 1. The nodes are located at the

positions given in Table I, are active for the times shown in

Figure 2, and have a maximum communication range of 90.

In the simulated system, the status of each node for selected

iterations is shown in Table II. Figure 1 shows the status of all

nodes once clusters resolve for the first time. Node 1 is then

removed at time step 10, and Figure 3 shows the status of the

remaining three nodes once they re-resolve.

1
leader 3

follower

2
leader

4
follower

Fig. 1. Initial resolution of S-elements in Example 1

off

 on

N
od

e
1

off

 on

N
od

e
2

off

 on

N
od

e
3

0 5 10 15

off

 on

N
od

e
4

Time

Fig. 2. Times of operation for Example 1

To test the transference of the algorithm to embedded

systems, the same configuration of nodes was implemented

using a colony of robots, shown in Figure 4. The clusters

that were resolved proved to be identical in the simulated and

embedded cases. In both the simulated and embedded cases,

the DSNL algorithm determined the correct leaders and S-

clusters for the S-net.

B. Example 2

For a more complex example, suppose we have the arrange-

ment of S-elements shown in Figure 5. The nodes are located

at the positions given in Table III, are active for the times

shown in Figure 6, and have a maximum communication range

of 50. In the simulated system, the status of resolved clusters

for selected iterations is shown in Table IV. After the clusters

TABLE II

STATE INFORMATION FOR EXAMPLE 1

Time Node Status cluster noncluster remaining

0 1 1 3 4
2 2 4
3 1 3 4
4 1 2 3 4

1 1 leader 1 3 4
2 leader 2 4
3 1 3 4
4 1 2 3 4

4 1 leader 1 3 4
2 leader 2 4
3 follower 1 3 4
4 follower 1 4 3

10 2 leader 2 4
3 leader 3 4
4 2 3 4

12 2 leader 2 4
3 leader 3 4
4 follower 2 4 3

3
leader

2
leader

4
follower

Fig. 3. Final resolution of S-elements in Example 1 after Node 1 has been
removed

are initially resolved, Node 1 is removed. After the clusters

resolve again, Node 20 is added. Figure 5 shows the status of

all nodes once clusters resolve for the final time. Example 2

serves as further verification of the performance of the DSNL

algorithm. This simulation demonstrates the scalability of the

algorithm as the number of nodes increases.

V. CONCLUSIONS

We have developed an improved leadership protocol for

S-nets that allows for dynamic updating of clusters. An im-

plementation of this protocol for embedded systems has also

been developed. This protocol has been demonstrated both in

simulation and using a colony of mobile robots as S-elements.

Fig. 4. Mobile robots as S-elements for Example 1

3
leader

5
leader

7
follower

9
follower
11

follower

13
follower

15
follower

17
follower

19
follower

2
leader

4
follower

6
follower

8
follower

10
leader

12
follower

14
follower

16
follower

18
leader

20
follower

Fig. 5. Final resolution of S-elements in Example 2 after Node 1 has been
removed and Node 20 has been added

TABLE III

NODE POSITIONS FOR EXAMPLE 2

Node X Y

1 18 106
2 56 50
3 98 114
4 68 34
5 127 72
6 60 84
7 42 27
8 50 118
9 102 68
10 17 130

Node X Y

11 92 70
12 93 40
13 26 41
14 83 123
15 74 11
16 80 47
17 56 29
18 103 15
19 124 101
20 49 15

TABLE IV

CLUSTER LISTS FOR EXAMPLE 2

Time Leader cluster

5 1 1 6 8 10
2 2 4 7 9 11 12 13 15 16 17
3 3 14 19
5 5
18 18

15 2 2 4 6 7 9 11 12 13 15 16 17
3 3 8 14 19
5 5
10 10
18 18

25 2 2 4 6 7 9 11 12 13 15 16 17 20
3 3 8 14 19
5 5
10 10
18 18

off

 on

N
od

e
1

off

 on

N
od

es
 2

−1
9

0 10 20 30

off

 on

N
od

e
20

Time

Fig. 6. Times of operation for Example 2

REFERENCES

[1] J. E. Bares and D. S. Wettergreen, “Dante II: Technical description, results,
and lessons learned,” International Journal of Robotics Research, vol. 18,
no. 7, pp. 621–649, July 1999.

[2] Y. Chen and T. C. Henderson, “S-Nets: Smart sensor networks,” in
Symposium on Experimental Robotics, Honolulu, December 2000, pp.
85–94.

[3] Y. Chen, “S-Nets: Smart sensor networks,” Master’s thesis, University of
Utah, 2000.

[4] T. C. Henderson, M. Dekhil, S. Morris, and W. B. Thompson, “Smart
sensor snow,” in IEEE Conference on Intelligent Robots and Intelligent

Systems, October 1998.
[5] H. V. D. Parunak, M. Purcell, and R. O’Connell, “Digital pheromones for

autonomous coordination of swarming UAV’s,” in AIAA Conference on

Unmanned Aerospace Vehicles, 2002.
[6] T. C. Henderson, “Leadership protocol for s-Nets,” in Multisensor Fusion

and Integration, Baden-Baden, Germany, August 2001, pp. 289–292.
[7] J. M. Galeotti, “The EvBot: A small autonomous mobile robot for the

study of evolutionary algorithms in distributed robotics,” Master’s thesis,
North Carolina State University, May 2002.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 1091
	02: 1092
	03: 1093
	04: 1094
	05: 1095
	06: 1096

