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Abstract—Evolutionary robotics (ER) investigates the 

application of artificial evolution toward the synthesis of robots 

capable of performing autonomous behaviors. Over the last 25 

years, researchers have reported increasingly complex evolved 

behaviors, and have compiled a de facto set of benchmark tasks.  

Perhaps the best known of these is the obstacle avoidance and 

target homing task performed by differential drive robots.  More 

complex tasks studied in recent ER work include augmented 

variants of the rodent T-maze and complex foraging tasks.  But 

can proof-of-concept results such as these be extended to evolve 

complex autonomous behaviors in a general sense?  In this 

topical analysis paper we survey relevant research and make the 

case that common tasks used to demonstrate the effectiveness of 

evolutionary robotics are not characteristic of more general cases 

and in fact do not fully prove the concept that artificial evolution 

can be used to evolve sophisticated autonomous agent behaviors.  

Robots capable of performing many of the tasks studied in ER 

have now been evolved using nearly aggregate binary success/fail 

fitness functions.  However, arguments used to support the 

necessity of incremental methods for complex tasks are 

essentially sound.  This raises the possibility that the tasks 

themselves allow for relatively simple solutions, or span a 

relatively small candidate solution set.   This paper presents these 

arguments in detail and concludes with a discussion of current 

ER research. 

Keywords—evolutionary robotics; artificial life; artificial 

evolution; open-ended evolution; genetic algorithms  

I. INTRODUCTION  

This paper examines the possibility that artificial 
evolutionary methods used in evolutionary robotics (ER), 
while producing compelling results on a range of benchmark 
tasks and behaviors of moderate difficulty, may not generalize 
to complex useful tasks.  Although recent advancements, 
including the use of multiobjective optimization approaches as 
well as task-independent diversity maintenance methods, are 
likely to extend the range of evolvable ER behaviors by 
perhaps as much as an order of magnitude (reviewed in [1]), 
there remain fundamental difficulties in combining 
evolutionary methods inspired by nature with goal-driven 
searches.  

The body of ER research reported in the literature traces the 
development of methodologies for evolving agents capable of 
specific tasks of modest difficulty.  The sophistication of tasks 
continues to increase, but much more slowly than might be 
expected from the exponential explosion of computing power 

seen in the last two decades.  One of the more complex tasks 
reported to date is a foraging task presented in [2].  In this task 
a robot collects balls in one room and delivers them to a 
specific goal location in another.  The robot controllers must 
evolve all low level competencies, including object avoidance 
and ball collection and delivery, hence the task includes a 
significant level of behavior acquisition and integration. The 
most complex ER tasks may fall into the range of minimal 
cognition as set out by Beer [3].  However, all ER control tasks 
studied to date can be solved by relatively simple algorithms.  
The body of ER research represents only limited progress 
toward the elusive goal of artificial evolution-based automatic 
acquisition of general behaviors for agents situated in complex 
environments. There is now, and has been for the last decade, 
considerable pressure in the ER community to generate 
controllers capable of demonstrably complex behaviors.  
Within this context, and considering that benchmark ER tasks 
have in most cases been studied and reproduced many times, 
researchers and theorists have begun to ask why it is the case 
that ER methods have not produced complex situated agents 
[4-6].  

The application of natural selection to configure artificial 
agents to perform specific complex autonomous behaviors 
appears to be much more problematic than had been generally 
recognized [7-11].  In the larger field of Artificial Life (ALife) 
there has been a move toward characterizing the conditions 
under which open-ended evolution [12] can occur [6, 13, 14].  
This in turn has added steam to a growing realization that the 
fitness or objective functions used to drive the artificial 
evolution of agents (robots in the case of ER) may be 
incompatible with open-ended evolution [8, 15, 16].  Although 
evolution is popularly characterized by the phrase “survival of 
the fittest”, it has been pointed out by theoreticians and 
researchers that conceptualizing fitness as a driving force does 
not fully describe natural evolution [7, 15, 16].  Natural 
evolution is a goalless process, in the most general sense, but 
local adaptation can often be modeled satisfactorily in terms of 
genotype or phenotype features and reproductive efficiency as 
formalized by a fitness landscape, as per Sewall Wright [17, 
18].  Here, though, local adaptation as observed in nature is 
more akin to optimization, and does not readily translate into a 
process that can synthesize artificial agents capable of specific 
sophisticated behaviors in complex environments.   

Issues related to modeling natural evolution have serious 
implications for ALife in general [12, 19].  In ER, by contrast, 
a specific behavior is usually sought, and hence there is often a 
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definable goal at least at a high level [1, 20].  But this raises 
another difficulty: even with a well-defined goal, formulating a 
goal-oriented fitness function capable of traversing a vast ultra-
high-dimensional search space is likely to be intractable for 
complex tasks without the aid of detailed domain knowledge 
[21].  Functions that aggregate fitness evaluation based on 
success or failure to complete a task suffer from the inability to 
generate any fitness signal in randomly initiated populations 
[22, 23].  For goal-driven evolutionary searches for behaviors 
of sufficient complexity, fitness functions that do not encode 
significant features of a particular solution will tend to define 
fitness landscapes in which regions outside a given radius of 
any fitness optimum consist primarily of plateaus with no 
detectable gradient (the Bootstrap Problem).  Incremental 
evolution and shaping methods require increasingly more 
specific domain knowledge, limiting their use to problems 
where such information is obtainable.  In a broad sense, 
artificial evolutionary schemes that drive selection by coupling 
performance of a specific task with survival are forms of 
optimization as opposed to synthesis [24].  As tasks become 
more complicated, requiring greater numbers of components 
and complex interactions, optimization methods contribute less 
to overall problem solutions and approach a purely refinement-
oriented utility.  

In this paper, we look at several lines of reasoning that 
support the view that ER methods will not scale without 
substantial changes.  As summarized above, current fitness 
assessment methods are likely to have significant problems in 
complex ER domains.  Also, we contend that canonical ER test 
problems can be solved by optimization methods and aren’t 
representative of arbitrarily complex cases. We then touch on a 
few more esoteric challenges to ER.  For instance, the success 
that ER has demonstrated to date might be due to a functional 
similarity between synthesis and optimization methods that 
holds for simple problems but not for complex problems.  
Further, certain aspects of how humans conceptualize and 
model complex systems may add to difficulties in designing 
artificial evolution-based platforms [9, 11, 25].      

The lack of progress in ER may not be solely due to 
theoretical problems.  Doncieux and Mouret [1] review recent 
advances in ER methods in a survey of selective pressures used 
in evolution.  These include diversity maintenance methods [2, 
26-28] and the use of multiobjective optimization methods [29, 
30].  Very large populations, situated asynchronous genetic 
algorithms (GAs) [31] and/or task-independent diversity-
maintaining mechanisms coupled with increases in computing 
power could lead to an order of magnitude increase in the 
complexity of achievable tasks.  Even so, we contend that task-
specific goal-driven evolution does not scale generally, and 
will eventually come up against a hard ceiling in terms of 
achievable complexity.  Advancement beyond that point will 
require augmentation of basic ER methodologies with fusion 
and decomposition techniques [5, 32, 33].  

In the remainder of this paper, Section II summarizes the 
origins and rise of embodied artificial life as a research field.  
Sections III and IV summarize and classify tasks/behaviors 
studied in ER and fitness functions used to drive the evolution 
of these behaviors.  Sections V and VI respectively contain 

discussions of the emerging challenges in ER and recent 
research efforts to overcome these challenges. 

II. BACKGROUND AND HISTORY 

Creating evolving self-replicating machines capable of 
long-term adaptation has been an enticing goal of artificial 
intelligence researchers since the earliest days of the computer 
age.  Famously, John Von Neumann [34] introduced and 
formulated the concept of autonomous self-replicating 
machines.  Recognition that computers could duplicate and 
harness some aspects of Darwinian evolution to solve difficult 
problems also has its roots at the dawn of the computer age.  
Evolution-based computing methods were even considered as 
rivals to procedural programming in the late 1940’s and early 
1950’s [35, 36].  One work in particular, performed by 
Friedman [37] in the 1950’s, used a form of artificial evolution 
to evolve simulated robots to perform a chemo-gradient 
following task.  This work foreshadowed by more than thirty 
years the rise of situated agent-based artificial life [38-41] and 
its embodied counterpart, evolutionary robotics [42-49]. 

The decade spanning the 1990’s could be considered the 
heyday of early evolutionary robotics.  Many of the now 
standard test scenarios were developed and extensively 
explored during this time.  These include navigation with 
obstacle avoidance and target homing [50, 51], foraging [7], 
differential navigation with memory [52], gait learning in 
legged robots [44, 53], coevolution of morphology and control 
for locomotion [54], and pursuit and evasion, usually 
formulated in terms of coevolution of populations [38, 39, 55].  

ER research from the 1990’s relied mainly on hand-
formulated fitness functions that defined many specific features 
of the behaviors for which the robots were being evolved.  In 
the following decade, many of these tasks were revisited and 
robots were evolved using much less a priori information in the 
selection process.  During this time period a series of more 
elaborate behaviors were evolved in larger environments, using 
color vision for sensing or requiring greater use of memory 
(see for example [23, 56, 57]). There were also advancements 
in methodologies, including refinement of real-robot coupled 
simulators, evolutionary neural networks, and coevolution of 
morphology and control [54]. The latter has progressed from 
the simulated block creatures in [40] to agents evolved in 
simulation and constructed in the physical world (see [58] for a 
review).   

Recently there have been additional advances in ER in 
terms of complexity of behavior [2, 30, 32, 33, 59-62]. We will 
look at some of these in more detail in later sections of this 
paper.  Some of these advances may represent the beginnings 
of a bridge to generalized evolution of competencies for 
complex autonomous agents, while others may be examples of 
special cases that take advantage of unusual task features to 
ramp up the power of evolutionary selection.  The next two 
sections summarize tasks investigated in ER and fitness 
assessment methods and provide a context for the discussion 
that follows. 
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III. BENCHMARK TASKS  

Replication of results, refinements in methods and 
comparative analyses make up the vast majority of published 
ER work.  Approximately 100 separate research efforts are 
reviewed in [20].  These in turn entail several thousand 
published reports.  Of these, though, there are only a few dozen 
distinct experiments in terms of the task or behavior 
investigated. These might be thought of as a de facto set of 
benchmark ER tasks and are summarized in this section.  These 
tasks, along with several more complex behaviors discussed in 
Section VI, represent an assessment of the current level of 
complexity of evolved behaviors reported in the ER literature.  

A. Target Homing 

Target homing in environments containing occluding 
obstacles has been one of the most frequently investigated 
behaviors in ER.  Early on, Harvey et al. studied locomotion 
with object avoidance [63] (also see [48]).  Zone homing 
behaviors were evolved in [42].  Locomotion with homing was 
investigated in [46, 47].  In later research these behaviors were 
combined, so that evolving populations were required to master 
all of the necessary sub-skills as well as the ultimate target 
homing ability [50, 51, 64].  There are several variants on this 
basic theme.  In [23] teams of robots competed in the same 
extended maze arena to locate goals differentially and in [57] a 
complex environment-mediated differential homing/repulsion 
task was studied (see Section VI.A).  

B. T-maze 

In recent years researchers have injected an element of 
forced memory into target homing tasks.  This often takes the 
form of a rodent T-maze [52].  A standard T-maze may be 
equipped with two signal stations separated both from each 
other (either spatially or temporally) and from the T 
intersection (the memory-T-maze) [65, 66].  A complex 
version of this experiment, the double T-maze [32], is 
discussed in Section VI.A of this paper.  

C. Foraging 

Object collection and deposition or foraging tasks in ER 
vary in degree of behavioral complexity [7, 56, 67].  In general, 
robots locate and collect objects, and then deposit them at goal 
locations.  Foraging tasks contain an element of sequencing 
and are less easily performed by purely reactive controllers.  
Currently more complex foraging tasks are a focus in ER.  
Examples include the sequential ball collection and deposition 
task summarized in the introduction [2] and a large-scale 100-
robot foraging task evolved with an environmentally situated 
GA [61]. 

D. Pursuit Evasion 

Pursuit evasion or predator-prey behaviors have been 
studied in ALife and ER over the years [39, 40, 68].  Typically 
two populations of competing agents are coevolved, with 
agents from one population taking the role of pursuer and the 
other evolving evasion behaviors.  The key motivation for 
studying these and similar tasks is that the coevolving 
populations may generate an adaptive fitness landscape that 

extends the duration of selective pressure (the Red Queen 
effect).  However, as noted in [1] and others, coevolving 
populations can also enter into cycles of repeating competitive 
behaviors. More complex examples include [30] in which 
neural controllers are evolved for a task that combines pursuit 
and foraging.  

IV. GOAL-ORIENTED FITNESS FUNCTIONS 

This section discusses fitness assessment and selection  
mechanisms employed in ER research.  Fitness functions often 
include information about both the degree to which a given 
task was completed, and how to perform a given task (a priori 
task solution information).  Both of these forms of information 
can bias evolving populations toward a known or partially 
known solution.  In [20] fitness functions for ER were 
classified into several categories based on the degree of a priori 
task solution information contained within the fitness function.  
We condense this classification to three basic groups: 
aggregate (also referred to as all-in-one or success/failure 
selection), incremental methods, and tailored fitness functions.  

A. Aggregate Success/Fail Selection 

At the lower end of introduced bias are aggregate fitness 
functions, which base selection only on success or failure to 
fully perform a task, and not on degree of completion or on 
details of how the task was performed.  Aggregate fitness 
functions are sometimes combined with disappearing bootstrap 
modes to provide fitness feedback early in evolution before any 
members of the evolving population are able to complete the 
task.  Although bootstrap modes do not contribute to selection 
late in evolution, they may leave a historical contingency 
equivalent to a bias in evolved populations, so an aggregate 
fitness function combined with a strong bootstrap mode may 
not be essentially different from some incremental fitness 
assessment methods.  

B. Incremental Fitness Functions 

In terms of injected bias, at the opposite extreme from pure 
aggregate fitness functions are incremental fitness functions 
and robot shaping techniques. These employ a series of 
successively more difficult fitness functions (and in some cases 
environmental conditions) to gradually evolve robots toward 
the ability to perform a particular task. These methods 
essentially chart a path through the search space to a particular 
(behavioral) solution to a given task and can require substantial 
amounts of explicit and intuitive domain knowledge to 
formulate.  Experimenters may take an engineering or design 
approach and break down complex tasks and behaviors into 
simpler modules that might then be put into a hierarchical 
behavioral control structure [32].  

C. Tailored Fitness Functions 

Tailored fitness functions reside somewhere between the 
two extremes of pure aggregate and incremental fitness 
functions.  These may explicitly select for some specific 
features of a solution but leave others unspecified alongside a 
weighted aggregate success/fail component.  As noted in [1], 
the integration of multiobjective optimization methodologies 
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into ER has allowed for a much more nuanced approach to the 
definition of tailored fitness functions. 

D. Additional Considerations and Current Methods 

In genetic algorithms used in ER some aspects of selective 
pressure might not be related to the performance of a desired 
task, but rather, to non-task-related features of the search’s 
progression through a search space.  As discussed in more 
detail in Section VI, this topic represents an active area of ER 
research and is reflected in several lines of work considered in 
this paper, including diversity maintenance [1, 2] and novelty 
search [28].  

V. CHALLENGES TO ER 

We focus on two arguments regarding the prospects for 
generalizing ER methods.  First, the de facto set of canonical 
ER test problems may not be representative of the general class 
of complex autonomous agent behaviors.  Second, fitness 
functions typically used in ER have underlying theoretical 
difficulties that make their application to the evolution of 
complex behaviors very problematic.  Subsections C and D 
discuss several more esoteric points.  

A. Benchmark ER Tasks Don’t Represent the General Case 

This subsection argues that ER behaviors evolved to date 
using mainly goal-driven artificial evolution aren’t 
representative of the general class of autonomous 
environmentally situated agent behaviors.  If benchmark ER 
tasks do not in fact reflect the general domain of ER, 
successful demonstration of these tasks may have produced a 
false sense that goal-driven artificial evolution is more useful 
for general problem solving than it actually is.   

ER experiments sometimes evolve relatively trivial 
solutions for tasks that researchers had intended to entail a 
higher level of complexity.  For example, the T-maze has 
solutions that do not require memory [52, 69].  Similarly, many 
benchmark ER tasks may have algorithmically simple, but 
possibly very obscure, solutions that are not obvious to 
designers, but which evolutionary searches can find in what 
essentially amount to extended optimization processes.  To see 
how this is at least theoretically possible, consider the nature of 
functional transforms: domains can be transformed via a 
change of variables, a representational transform, or by other 
means to make computations simpler (but often at the cost of 
convoluting the exact meaning of the computation).  Laplace 
transforms are a classic example of this: differential operators 
in the time domain are transformed to algebraic operators in 
the complex frequency domain.  Many classes of evolutionary 
neural networks have general computing abilities and can in 
theory perform domain transforms.  It is plausible that 
networks and other generalized evolvable controllers span 
something akin to a pan-transformational space during 
evolutionary search, finding simple solutions to seemingly 
complex tasks, but only if such solutions exist. 

One might ask, then, if goal-driven evolution is able to find 
simple solutions to seemingly complex problems, why 
wouldn’t this be considered an overall benefit and validation of 

ER?  After all, isn’t this what natural evolution does? The 
problem is that the general class of cognitive behaviors, 
especially those that require complex nested information 
manipulation, likely do not have simple solutions in any 
domain.  Further, many evolutionary biologists do not consider 
natural evolution to be a goal-driven process, so that the 
generative power of natural evolution cannot be related to the  
emergence of any particular predefined complex capability [11, 
15, 16, 25].   

If one were to assume that most situated agent behaviors 
have simple representations in some domain, then perhaps ER, 
using high-level goal-driven selection, would in fact be able to 
evolve situated agents for arbitrary tasks in complex 
environments.  But this assumption seems untenable in the 
general case:  if in one domain or another, a behavioral task has 
a very simple solution, then its ultimate complexity (as 
measured for example by its Shannon entropy or Kolmogorov 
complexity) is low.   

We want also to make a clear distinction between the “AI 
of the gaps” argument (i.e. if an artificial system can do it, it 
must not be AI) and our argument.  We contend that goal-
driven evolution is a form of optimization, and that some 
seemingly complex tasks actually reduce to simple 
optimization problems in some domains (see above, and also 
Subsection C of this section).  Importantly, though, tasks 
beyond a threshold level of complexity may not have forms in 
any domain that are amenable to solution via direct 
optimization.  

A second objection to these arguments might be that just 
because some benchmark ER tasks ultimately have trivial 
solutions, doesn’t mean that they do as a rule.   However, many 
of these tasks have been shown directly to have relatively 
simple solutions.  A common component of many ER 
experiments is to hand code controllers for comparison [23, 59, 
77].  For the vast majority of tasks investigated in the literature, 
such hand coded controllers are in fact extremely simple, 
requiring only a few pages of code, yet are shown to be 
competitive with evolved controllers in most cases. Further, 
recent work showing that ER environments can be transformed 
into behavioral domains that are tractable to an exhaustive 
search may provide an explicit empirical demonstration that 
some ER tasks do not represent the degree of complexity that 
was initially associated with them.  In [28] and in related work 
reported in [66] the authors demonstrate that in some 
behavioral domains, neural controllers can be evolved to 
perform a specific memory-based task (delayed memory T-
maze) without any feedback on task performance.  This was 
accomplished by constructing, via the use of artificial 
evolution, a library of extended behaviors covering an entire 
behavioral domain using only a behavioral difference measure. 
Such work demonstrates that given an appropriate transform 
(into a behavioral domain in this case) it is possible to 
automatically enumerate a whole class of minimally cognitive 
behaviors using evolutionary methods with at least some 
expectation that a given behavior will be in the enumerated set. 

The contention that the progression of ER results simply 
reflects an ongoing incremental effort toward ultimate 
generality is countered by the very slow rate of increase of 
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complexity of directly evolvable behaviors. From the 
chemotaxis simulated robot behavior achieved via GA-like 
methods in the 1950’s [37] to today’s state-of-the-art results, 
which are only marginally more complex than directly evolved 
behaviors from the late 1990’s, development is at best linear.   

B. Fitness Functions Don’t Scale 

Problems with task-specific fitness functions have become 
a prominent focus in ER research [2, 27, 28, 70]. This 
subsection looks at the major classes of fitness functions that 
were outlined in Section IV, concluding that most forms of 
task-specific fitness functions are ultimately limited to 
extended optimization in terms of utility.   

Aggregate fitness functions are likely to suffer from the 
inability to detect any fitness signal in initial random 
populations as tasks increase in complexity.  For some 
threshold of behavioral complexity, fitness functions that do 
not select for specific a priori known solutions will be 
increasingly associated with intractable search landscapes [21, 
71].  In particular, such functions will define fitness landscapes 
that consist primarily of zero-plateaus with undetectably 
shallow gradients.  This was known in the early days of ER.  
Initially it was argued that in order to evolve any but the most 
simplistic behaviors in robots, an incremental approach would 
be needed [72, 73].  In the long run, this is still likely to be the 
case, but has been less of an issue than might have been 
expected.  Some of the more complex tasks discussed in the 
literature have successfully employed aggregate or nearly 
aggregate fitness functions [2, 56, 59, 61].  The ramifications 
of this are of interest and provide an additional point of support 
for the conjecture presented in the previous subsection of this 
paper: the set of benchmark tasks used in ER contain solutions 
that are less complex than previously supposed. 

Incremental fitness functions and robot shaping methods 
require ever-increasing domain knowledge, and in the limit, 
approach engineered methods such as those demonstrated in  
[5] and [33].   Here, as an a priori solution to a task is specified 
in greater detail by designers, the GA serves an increasingly 
more optimization-like role.  Hence, the automatic design 
capability often presented as a motivating factor in ER research 
becomes marginalized.  

Tailored fitness functions can combine varying degrees of 
aggregate selection with task solution features, and can 
approach incremental and shaping methods.  In this sense, 
difficulties associated with tailored fitness functions are not 
qualitatively distinct from those of aggregate or incremental 
fitness functions but fall somewhere in between these two 
extremes.  However, in some cases tailored fitness functions 
can be more problematic than simple aggregate fitness 
functions. As task complexity increases, researchers may 
inadvertently introduce topological features into a fitness 
landscape that are detrimental to the search [21, 28, 71].  In 
[28] just such a tailored fitness function is compared to, and 
out-performed by, a behavioral diversity-driven evolutionary 
search, referred to as novelty search.  The task studied was a 
maze navigation and goal homing behavior.  The mazes 
included cul-de-sacs oriented so that approaching the goal 
would require backtracking. The tailored fitness function in 

this case used a term that minimized the distance between the 
robot and the goal location, thus introducing a tendency for 
evolving controllers to favor strategies in which robots became 
ensnared in the cul-de-sacs. The intent of the research was to 
demonstrate that novelty search methods could overcome such 
problems.  In addition, though, the work demonstrated that 
assumed task solution information (i.e. moving continually 
closer to the target is a good way to ultimately approach it) can 
introduce local optima into fitness landscapes.    

At what level of task complexity do goal-oriented fitness 
functions begin to lose utility in terms of synthesis?  An exact 
formal answer to this question may be beyond the scope of 
evolutionary theory at present.  Still, confining the scope of this 
question to tasks in which only success/fail aggregate fitness is 
used to drive evolution, current research appears to be 
approaching an empirical answer.  In [2] the authors show that 
aggregate selection alone is not sufficient to evolve robots for a 
repetitive ball collection and deposition task (see Section I).  
But when augmented with a diversity measure, the aggregate 
fitness function was able to support the evolution of controllers 
able to perform the task.  Several different measures of 
diversity were investigated, and at least one of them contained 
no task-specific information, and thus the aggregate fitness 
function could still be considered to be adequate in some sense 
to drive the evolution of this relatively complex behavior.  In 
another very complex task in which a robot must first navigate 
through a room with obstacles, enter and negotiate a double T-
maze, then return to the original room, the authors resorted to a 
structured hierarchical decomposition method, stating that an 
aggregate or even a single fitness function approach would not 
be sufficient [32, 33].  Considering that the task-independent 
diversity metric augmented approach has not yet been 
attempted on a task of this complexity, a hard limit on the 
utility of aggregate fitness has not yet been fully demonstrated.  
The field of ER could be characterized as being collectively in 
a déjà vu-like state with regard to attitudes in the mid 1990’s in 
which early forms of incremental evolution were seen as 
obviously necessary.  Now, though, perhaps such methods are 
in fact the only viable alternatives. 

A final consideration on the subject of fitness functions: 
even with the advent of multiobjective optimization methods, 
there is no standard methodology for creating fitness functions 
in ER, and experimenters often put a considerable amount of 
effort into their design.  Moreover, this design process is 
usually not detailed in published results. Thus, the human-
directed heuristic and subjective design process associated with 
generating fitness functions remains a largely uncharacterized 
but still essential aspect of ER. 

C. Optimization Equals Synthesis, but only for Simple Tasks 

The arguments presented in this subsection overlap to a 
degree with those of subsection A, but take a different bent. 
Some evolved autonomous agent behaviors seem to display a 
degree of scalable complexity [2, 56, 60, 61], but this may 
partially reflect a functional overlap between synthesis and 
optimization (adaptation) processes at the lower end of task 
complexity.  Here we suggest that controller configurations 
within a certain radius of a solution or optimum (in terms of 
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distance in genome space, i.e., Hamming distance, or phenome 
space) can be evolved using essentially local adaptation.  If the 
task for which controllers are being evolved is simple enough, 
this radius might encompass a considerable portion of the 
entire search space.  Hence, the chances of having a candidate 
solution with some detectable level of performance in a 
randomly initiated population might be greater than expected 
based on a superficial assessment of apparent task complexity.  

This overlap between synthesis and optimization at the 
lower end of complexity is mediated by population size, 
diversity, and GA features, so that incremental improvements 
in evolvability can be demonstrated so long as Moore’s law 
holds.  For example, the ruggedness of a fitness landscape 
associated with a given task, genome/phenome and objective 
function is essentially constant, but population sizes can 
increase as a function of available computational power.  
Hence, a sufficiently large and diversified population with an 
appropriately set mutation rate might effectively smooth very 
rugged fitness landscapes, thus increasing the degree of 
complexity of tasks for which objective-driven evolutionary 
searches are tractable [18, 59].   

D. Inadequate Theory and Issues of Human Cognition 

In this subsection we take a more philosophical or theory-
of-mind approach to our central question: if goal-driven ER 
methods could in fact support the automatic configuration of 
complex useful behavioral controllers, then why hasn’t this 
been demonstrated?  A possible answer to this question is that 
evolution of many complex behaviors might indeed have been 
attempted, but since negative results are rarely published in 
engineering-related fields (i.e. we attempted to design this 
system in this way and it did not work…), most such work 
would likely not have been published (except perhaps as part 
of a comparative study).  Alternatively, such work may rarely 
have been attempted because skilled researchers often have a 
keen intuition related to which experiments might yield useful 
results.  This might be considered a sort of intuitive ceiling in 
ER, and is potentially a liability in a field in which intuitions 
about processes and mechanisms are partially informed by 
artifactual aspects of human cognition.  This subsection 
summarizes several of these possible artifactual aspects.  

Human cognition, intuition and linguistic issues may play a 
significant role in introducing methodological and theoretical 
difficulties into the design of goal-driven artificial evolutionary 
systems [15, 16, 25, 74].  For example, [15] points out that 
there is little evidence or theory to connect evolutionary 
processes to increasing complexity, but that this concept 
remains a fixture in descriptions of natural selection.  
Furthermore, there seems to be an almost ineluctable 
propensity to conceptualize natural evolution’s ability to 
generate self-replicators as a goal, rather than as an emergent 
property of an undirected process.  This in turn leads to the 
idea that the perceived goal of self-replication (or at least 
replication efficiency) can be supplanted by some other goal or 
competency.  However, outside a limited view of local 
adaptation, such views are inconsistent with modern theories of 
evolution as a fundamentally goalless process.   

In a different vein, features of human cognition may allow 
researchers to mistake an agent driven by an essentially trivial 
algorithmic control mechanism for something displaying 
complex autonomous behavior.  An example familiar to most 
autonomous systems researchers is illustrated by Grey Walter’s 
tortoises or some of Braitenberg’s vehicle experiments [75, 
76].  Although these both seem to generate a degree of 
complex autonomous behavior, the algorithms used do not rise 
to the level of what might be considered minimal cognition.  
Pattee [25] touches upon this issue in the following quote: 
“This means that <artificial evolution> must evaluate its 
models by the strength of its theories… and not by 
technological mimicry alone. The high quality of computer 
simulations and graphics displays can provide a new form of 
artificial empiricism to test theories more efficiently, but this 
same quality also creates illusions.”  Considering that these 
words were written in 1987, before the rise of ER, the 
evolutionary robotics community should really take them to 
heart.   

VI. THE CURRENT STATE OF ER 

In this final section, we discuss recent results as well as 
current efforts to overcome some of the problems and issues 
facing ER that were raised in this paper.  The most promising 
methods to address goal-driven optimization’s inability to drive 
evolution of complex information-intensive behaviors involve 
promoting rapid and extensive neutral drift in genome and/or 
behavioral spaces.  Several such methodological changes to ER 
that might increase the degree of achievable complexity of 
evolvable behaviors are discussed.  In particular, diversity 
maintenance methods that do not use task-specific information 
have been shown to increase the difficulty of tasks for which 
goal-driven selection is effective. Although these 
improvements would not fully generalize goal-driven artificial 
evolution, they may provide for at least an order of magnitude 
increase in behavioral complexity.  

A. Complex Evolved Behaviors 

In recent years some more complex evolved 
behaviors/tasks have been reported [2, 30, 32, 33, 56, 57, 59-
62].  We highlight several of these to provide a context for a 
discussion of how current research reflects on the hypothesis 
presented in this paper.  

In [57] a very complex version of phototaxis is studied.  
Robots are situated in an arena containing a light source which 
is surrounded by a circle drawn on the floor.  If the circle has a 
break in it, the robots must approach the light via the break but 
may not cross the unbroken part of the circle.  If there is no 
break in the circle, the robots must move away from the light.  
The work also includes an aspect of communication: robots are 
rewarded for producing a signal if they recognize that the circle 
is unbroken.  This may help the other robots move away from 
the light without circumnavigating it, and this behavior was 
indeed observed in some evolved controllers.  Controllers in 
only 3 of 10 evolutions were able to perform the discrimination 
task, and this may add weight to the view that fitness 
landscapes can become dominated by zero-plateaus as task 
difficulty/complexity increases.  
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Capi and Doya [56] report the evolution of a complicated 
sequential task in which a robot must visit three target/object 
locations repeatedly in a specific order.  The robot relies on 
color vision to distinguish between the objects.  The evolved 
controller was tested on a real robot. This work used a fitness 
function that was nearly free of task solution features, 
providing fitness feedback based on how many of the objects 
were collected in the correct sequence. 

In [60] a group foraging task involving role allocation was 
evolved.  Robot controllers were homogeneous, consisting of 
multi-layer recurrent ANNs.  Some robots were required to 
remain within a color-demarked zone while others traveled to 
particular foraging sites and back to the demarked zone.  The 
fitness function was tailored to a degree, but largely based on 
bootstrap elements and success rates at completing the two 
role-related tasks. Using homogeneous controllers makes this a 
very complex task. 

Nitschke et al. [59] describe the evolution of many 
heterogeneous controllers for 30 or more robots in a sequential 
multiple-object foraging task similar to that described in [77].  
In this work robots respond to various signals to find and 
deliver objects of several different types to a region in the 
center of an arena (some of which require multiple robots to 
transfer).   This task is among the most complex reported in the 
ER literature and also used a more or less aggregate fitness 
measure based on the number of objects delivered in the right 
sequence.  Although the task studied is of considerable interest, 
[77] and [59] demonstrated that a similar task could be 
accomplished with hand-coded locally reactive rules operating 
on the robots.    

In [61] the authors employ an environmentally embedded 
fitness function based on “energy” collected and expended.  
Fitness is based only on energy levels of the robots, hence the 
task is implicitly to maximize energy collection, as per a 
foraging task.  The robots must evolve to negotiate all aspects 
of their environment, and there is an implicit element of intra-
population competition for the energy.  One hundred simulated 
robots were used in initial phases of the experiment, and a 
simplified version was conducted using 20 real differential 
drive robots.  This is a rarely implemented and robust method 
of increasing diversity and delaying convergence harkening 
back to Watson [31] and Werner [39].  

In [32, 33] the use of hierarchical decomposition methods 
to combine evolved controller modules to accomplish complex 
tasks is investigated.  In particular, the authors report on a very 
complex multi-robot object moving task in which three robots 
must locate an object in one room, move it to a door which 
must be opened by touching a target near the door, then move 
the object down a corridor and into another room.  The authors 
decompose this task into six subtasks (five of which are 
evolved ANNs) and combine these with a high-level evolved 
controller (also a recurrent ANN).  Although the authors don’t 
prove that their task could not have been evolved without 
shaping, incremental or manual decomposition methods, they 
do highlight just how difficult such an endeavor would be.  

In terms of complexity of evolvable behaviors, how do 
controllers generated using current ER methods (such as those 

reviewed above) compare to fully autonomous robot 
controllers developed using other more general methods?  In 
order to judge this, let’s look at a typical state-of-the-art 
example from the general field of fully autonomous systems 
for comparison.  Because of the great diversity of research in 
ER and research in the larger field of autonomous systems, it is 
not practical to define exacting bounds on the whole range of 
possible autonomous behaviors.  Current state-of-the-art fully 
autonomous systems are described in [81 - 83].  To pick one of 
these, [81] describes a robot capable of very sophisticated fully 
autonomous urban path planning and navigation.  Here, the 
robot is given an arbitrary destination.  In response, the robot 
makes use of an online map application to plan a course and 
then follow that course to the requested location.  With very 
extensive decomposition, ER methods would likely be able to 
generate at least some of the component behaviors needed for 
this task, but high-level goal-driven evolution using aggregate 
selection could not be expected to drive the evolution of this 
competency.  The point here isn’t to put ER to an unfair test, 
but rather to highlight that simple goal-driven artificial 
evolution is quite limited, when viewed in the context of 
complex tasks involving a high degree of context-relevant 
information manipulation.  With task decomposition and other 
augmentations, aspects of ER still provide utility, however this 
utility tends toward optimization as tasks become more 
complex, so that the goal of general automatic controller 
generation for sophisticated tasks is not feasible using artificial 
evolution driven by high-level task description alone.  

B. State of the Art Methods in ER  

We have touched on many of the current areas of ER 
research.  In this subsection we bring these together and 
summarize them as a group. 

Diversity maintenance methods are a potentially promising 
area of ER research.  Novelty search [27, 28] uses measures of 
behavioral diversity to drive evolution, while other diversity 
maintenance methods are implemented with goal-directed 
fitness terms in weighted sums or via the use of multiobjective 
optimization methods [2].  

In novelty search involving a decomposition of the robot-
environment system into a behavioral description, a transform 
of the problem into a much more tractable domain is achieved 
[8] (as discussed in Section V.A).  The main concern with 
these methods is that measuring diversity is an open problem, 
and it is possible that for complex problems, a fairly deep 
understanding of the solution space is needed [27, 78].  
Novelty search methods have been used without explicit task 
oriented fitness functions [8]. It seems contradictory to fully 
renounce objectives in ER, and in some ways, one cannot 
expect to find a solution to a very specific, very complicated 
problem without at least an implicit selective bias.  However, 
and perhaps counter-intuitively, if the evolutionary 
agent/environment is sophisticated enough, it might in fact 
contain solutions that while not being exactly fitted to a given 
arbitrary complex task, are within striking distance.  Hence, as 
implied in [8, 28], an explicit objective can be implicitly sought 
in an environment in which a diverse population is engaged in 
open-ended evolution.  
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In the case of non-task-specific diversity measures such as 
those studied in [2] (summarize in Section V), the effect seems 
to be to increase the range over which goal-driven searches are 
effective.  These methods are not fully characterized in the 
literature and may lead to a substantial increase in the 
achievable limits of goal-driven evolutionary search.  Gains in 
performance due to diversity and novelty search enhancements, 
though, may ultimately be equivalent to those that might be 
achieved by using very large population sizes as in [59], 
asynchronous local reproduction [31, 39], environmentally 
embedded implicit fitness functions and very extensive training 
environments [61].  Our conclusion, though, is that diversity 
maintenance methods address problems of fitness landscape 
smoothing and population spread, but do not fully address the 
question of how to use artificial evolution for specific tasks of 
arbitrary complexity.  

Some selection methods can provide progressive or 
continual selective pressure starting from completely random 
initial populations to populations capable of near optimal 
performance of a given task.   Most complex fitness functions 
and incremental methods are intentionally designed to do this, 
that is, to guide the search through the solution space to a fit 
solution.   

Simple aggregate success/fail fitness functions can also be 
formulated to provide progressive detectable selective pressure 
throughout the course of evolution when combined with 
competition in some special cases.  This can be achieved in 
systems in which homogeneous or heterogeneous populations 
compete to perform a task that has both trivial and 
sophisticated solutions.  This case is best exemplified by the 
evolution of game-playing neural networks for games such as 
Checkers and Go [79, 80].  Here, some percentage of games 
will come to an end with a winner, even if the opponents are 
abjectly incompetent and make nearly random moves.  This 
allows a single progressive aggregate fitness function based 
only on number of wins in a tournament to be used to drive 
selection.  This concept has received some attention in ER in 
relation to evolving populations of controllers for competitive 
behaviors [10, 23]. 

VII. CONCLUSION 

In terms of complexity of behaviors and using current state 
of the art ER methods, the limits of relatively non-biased goal-
driven artificial evolution appear to be in the range of the 
complexities of tasks such as those reported in [33, 60].  In 
light of the very considerable amount of research reported in 
ER over the last 25 years, and the lack of any fully evolved 
autonomous robotic system that might approach the state-of-
the-art performance of autonomous systems in general [81-83], 
it is likely that some methodological aspirations of ER are not 
feasible using current or near future technology.  This paper 
has presented several arguments suggesting that direct goal-
driven evolution of very complex autonomous robot behaviors, 
although possible in some specific cases, is not tractable in the 
general case. 

Topology smoothing and GA enhancement methods, 
including task-independent diversity maintenance and 
environmentally situated asynchronous GAs, are not yet fully 

characterized in the literature and may lead to significant 
improvements in ER.  Recently, more generalized methods 
involving design and engineering combined with a more 
optimization-oriented use of artificial evolution have been 
shown to out-perform pure evolutionary approaches.  These 
incremental approaches may indeed represent the future of ER 
for some time to come. 
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